Much of the literature on rational cryptography focuses on analyzing the strategic properties of cryptographic protocols. However, due to the presence of computationallybounded players and the asymptotic nature of cryptographic security, a definition of sequential rationality for this setting has thus far eluded researchers.We propose a new framework for overcoming these obstacles, and provide the first definitions of computational solution concepts that guarantee sequential rationality. We argue that natural computational variants of subgame perfection are too strong for cryptographic protocols. As an alternative, we introduce a weakening called threat-free Nash equilibrium that is more permissive but still eliminates the undesirable "empty threats" of non-sequential solution concepts.To demonstrate the applicability of our framework, we revisit the problem of implementing a mediator for correlated equilibria (Dodis-Halevi-Rabin, Crypto'00), and propose a variant of their protocol that is sequentially rational for a non-trivial class of correlated equilibria. Our treatment provides a better understanding of the conditions under which mediators in a correlated equilibrium can be replaced by a stable protocol.
Abstract. We consider the problem of random selection, where p players follow a protocol to jointly select a random element of a universe of size n. However, some of the players may be adversarial and collude to force the output to lie in a small subset of the universe. We describe essentially the first protocols that solve this problem in the presence of a dishonest majority in the full-information model (where the adversary is computationally unbounded and all communication is via nonsimultaneous broadcast). Our protocols are nearly optimal in several parameters, including the round complexity (as a function of n), the randomness complexity, the communication complexity, and the tradeoffs between the fraction of honest players, the probability that the output lies in a small subset of the universe, and the density of this subset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.