To clarify the mechanisms of bone destruction associated with bone metastases, we studied an animal model in which inoculation of MDA-MB-231 human breast cancer cells into the left cardiac ventricle of female nude mice causes osteolytic lesions in bone using morphological techniques. On the bone surfaces facing the metastatic tumor cells, there existed many tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. TRAP-positive mononuclear osteoclast precursor cells were also observed in the tumor nests. Immunohistochemical studies showed that the cancer cells produced parathyroid hormone-related protein (PTHrP) but not receptor activator of NF-kappaB ligand (RANKL). Histochemical and immunohistochemical examinations demonstrated that alkaline phosphatase and RANKL-positive stromal cells were frequently adjacent to TRAP-positive osteoclast-like cells. Immunoelectron microscopic observation revealed that osteoclast-like cells were in contact with RANKL-positive stromal cells. MDA-MB-231 cells and osteoclast-like cells in the tumor nests showed CD44-positive reactivity on their plasma membranes. Hyaluronan (HA) and osteopontin (OPN), the ligands for CD44, were occasionally colocalized with CD44. These results suggest that tumor-producing osteoclastogenic factors, including PTHrP, upregulate RANKL expression in bone marrow stromal cells, which in turn stimulates the differentiation and activation of osteoclasts, leading to the progression of bone destruction in the bone metastases of MDA-MB-231 cells. Because the interactions between CD44 and its ligands, HA and OPN, have been shown to upregulate osteoclast differentiation and function, in addition to the cell-cell interactions mediated by RANK and RANKL, the cell-matrix interactions mediated by these molecules may also contribute to the progression of osteoclastic bone destruction.
In the radiolysis of water vapor containing small concentrations of cyclohexane, the principal products which account for about 98% of all end products are found to be hydrogen, cyclohexene, and bicyclohexyl. Cyclohexene and bicyclohexyl yields were determined over a range of temperatures (70-200°C), total pressures (50-2400 torr), and total doses (0.15-2.0 Mrad). The disproportionation-combination ratio k;/kP for c -C~H I I radicals could be determined as 0.56 f 0.01 from the ratio of cyclohexene to bicyclohexyl yield. By using c-CgD12, the ratio kflkf for c-CgDII radicals is found to be 0.38 f 0.01. Comparison of the reactivity pattern of CgHll and CgDll radicals leads to (k;/kF)/(kf/kF) = 1.47 f 0.02. The corresponding values for the reactions of c-C~H11 with c-CgD11 were also determined.
Hydrogen, cycloalkene, and bicycloalkyl were found to be the principal products which account for ~9 7 % of all products formed in the gas-phase radiolysis of water vapor containing low concentrations of cycloalkanes. From the ratios of cycloalkene-to-bicycloalkyl yields extrapolated to the zero dose, the self-and cross-disproportionation-to-recombination rate constant ratios A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.