Action observation (AO) and motor imagery (MI) are useful techniques in neurorehabilitation. Previous studies have reported that AO and MI facilitate corticospinal excitability only in those muscles that are active when actually performing the observed or imagined movements. However, it remained unclear whether spinal reflexes modulate multiple muscles simultaneously. The present study focused on AO and MI of walking and aimed to clarify their effects on spinal reflexes in lower-limb muscles that are recruited during actual walking. Ten healthy males participated in the present study. Spinal reflex parameters evoked by transcutaneous spinal cord stimulation were measured from five lower-limb muscles during rest, AO, and AO combined with MI (AO + MI) conditions. Our results showed that spinal reflexes were increased in the tibialis anterior and biceps femoris muscles during AO and in the tibialis anterior, soleus, and medial gastrocnemius muscles during AO + MI, compared with resting condition. Spinal reflex parameters in the vastus medialis muscle were unchanged. These results indicate the muscle-specific modulations of spinal reflexes during AO and AO + MI. These findings reveal the underlying neural activities induced by AO, MI, and their combined processes.
The aim of the present study was to determine the effect of hypercapnia on motor neuromuscular activity of the human triceps surae muscle. Nine subjects participated in trials in a normal breathing condition and a CO2 rebreathing condition. In both conditions, in order to provoke self-sustained muscle activity, percutaneous electrical train stimulation was applied to the tibial nerve while each subject lay on a bed. Self-sustained muscle activity, which is an indirect observation of plateau potentials in spinal motoneurons, was measured for 30 s after the train stimulation by using surface electromyography. The sustained muscle activity was increased by CO2 rebreathing (P < 0.05). This finding suggests that motor neuromuscular activity may be linked to the respiratory system that is activated during hypercapnia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.