The neurohypophysial hormone arginine vasopressin (AVP) is essential for a wide range of physiological functions, including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. These and other actions of AVP are mediated by at least three distinct receptor subtypes: V1a, V1b, and V2. Although the antidiuretic action of AVP and V2 receptor in renal distal tubules and collecting ducts is relatively well understood, recent years have seen an increasing understanding of the physiological roles of V1a and V1b receptors. The V1a receptor is originally found in the vascular smooth muscle and the V1b receptor in the anterior pituitary. Deletion of V1a or V1b receptor genes in mice revealed that the contributions of these receptors extend far beyond cardiovascular or hormone-secreting functions. Together with extensively developed pharmacological tools, genetically altered rodent models have advanced the understanding of a variety of AVP systems. Our report reviews the findings in this important field by covering a wide range of research, from the molecular physiology of V1a and V1b receptors to studies on whole animals, including gene knockout/knockdown studies.
Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer, but it causes acute peripheral neuropathy (acral paresthesias triggered by exposure to cold) and chronic neuropathy (abnormal of sensory and motor dysfunction). Oxaliplatin is metabolized to oxalate and dichloro(1,2-diaminocyclohexane)platinum (Pt(dach)Cl(2)). Although the chelating of Ca(2+) with oxalate eliminated from oxaliplatin is thought as one of the reasons for the neuropathy, there is little behavioral evidence. In this study, we investigated the involvement of oxalate in the oxaliplatin-induced peripheral neuropathy in rats. Oxaliplatin (4mg/kg, i.p., twice a week) induced cold hyperalgesia/allodynia (cold-plate and acetone tests) in the early phase, and mechanical allodynia (von Frey test) in the late phase. Oxalate (1.3mg/kg, i.p., twice a week) induced the cold hyperalgesia/allodynia in the early phase, but did not induce the mechanical allodynia. On the other hand, Pt(dach)Cl(2) (3.8mg/kg, i.p., twice a week) induced the mechanical allodynia in the late phase, but did not induce the cold hyperalgesia/allodynia. The pre-administration of calcium or magnesium (0.5mmol/kg, i.v.) before oxaliplatin or oxalate prevented the cold hyperalgesia but not mechanical allodynia. However, the treatment with calcium or magnesium after the development of neuropathy could not attenuate the cold hyperalgesia or mechanical allodynia. These findings suggest the involvement of oxalate in oxaliplatin-induced cold hyperalgesia but not mechanical allodynia, and usefulness of prophylactic treatments with calcium and magnesium on the acute peripheral neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.