Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer, but it causes acute peripheral neuropathy (acral paresthesias triggered by exposure to cold) and chronic neuropathy (abnormal of sensory and motor dysfunction). Oxaliplatin is metabolized to oxalate and dichloro(1,2-diaminocyclohexane)platinum (Pt(dach)Cl(2)). Although the chelating of Ca(2+) with oxalate eliminated from oxaliplatin is thought as one of the reasons for the neuropathy, there is little behavioral evidence. In this study, we investigated the involvement of oxalate in the oxaliplatin-induced peripheral neuropathy in rats. Oxaliplatin (4mg/kg, i.p., twice a week) induced cold hyperalgesia/allodynia (cold-plate and acetone tests) in the early phase, and mechanical allodynia (von Frey test) in the late phase. Oxalate (1.3mg/kg, i.p., twice a week) induced the cold hyperalgesia/allodynia in the early phase, but did not induce the mechanical allodynia. On the other hand, Pt(dach)Cl(2) (3.8mg/kg, i.p., twice a week) induced the mechanical allodynia in the late phase, but did not induce the cold hyperalgesia/allodynia. The pre-administration of calcium or magnesium (0.5mmol/kg, i.v.) before oxaliplatin or oxalate prevented the cold hyperalgesia but not mechanical allodynia. However, the treatment with calcium or magnesium after the development of neuropathy could not attenuate the cold hyperalgesia or mechanical allodynia. These findings suggest the involvement of oxalate in oxaliplatin-induced cold hyperalgesia but not mechanical allodynia, and usefulness of prophylactic treatments with calcium and magnesium on the acute peripheral neuropathy.
Oxaliplatin is a key drug for colorectal cancer, but it causes acute peripheral neuropathy (triggered by cold) and chronic neuropathy (sensory and motor neuropathy) in patients. Neurotropin, a non-protein extract from the inflamed rabbit skin inoculated with vaccinia virus, has been used to treat various chronic pains. In the present study, we investigated the effect of neurotropin on the oxaliplatin-induced neuropathy in rats. Repeated administration of oxaliplatin caused cold hyperalgesia from Day 5 to Day 29 and mechanical allodynia from Day 15 to Day 47. Repeated administration of neurotropin relieved the oxaliplatin-induced mechanical allodynia but not cold hyperalgesia, and inhibited the oxaliplatin-induced axonal degeneration in rat sciatic nerve. Neurotropin also inhibited the oxaliplatin-induced neurite degeneration in cultured pheochromocytoma 12 (PC12) and rat dorsal root ganglion (DRG) cells. On the other hand, neurotropin did not affect the oxaliplatin-induced cell injury in rat DRG cells. These results suggest that repeated administration of neurotropin relieves the oxaliplatin-induced mechanical allodynia by inhibiting the axonal degeneration and it is useful for the treatment of oxaliplatin-induced neuropathy clinically.
BackgroundOxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA) receptors in oxaliplatin-induced mechanical allodynia in rats.ResultsRepeated administration of oxaliplatin (4 mg/kg, i.p., twice a week) caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol) and memantine (1 μmol), NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t.) and ifenprodil (50 mg/kg, p.o.) significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase) but not on Day 5 (early phase). Moreover, we examined the involvement of nitric oxide synthase (NOS) as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS) inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981.ConclusionThese results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.
BackgroundOxaliplatin is an important drug used in the treatment of colorectal cancer. However, it frequently causes severe acute and chronic peripheral neuropathies. We recently reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats, and that oxalate derived from oxaliplatin is involved in the cold hyperalgesia. In the present study, we examined the effects of Ca2+ channel blockers on oxaliplatin-induced cold hyperalgesia in rats.MethodsCold hyperalgesia was assessed by the acetone test. Oxaliplatin (4 mg/kg), sodium oxalate (1.3 mg/kg) or vehicle was injected i.p. on days 1 and 2. Ca2+ (diltiazem, nifedipine and ethosuximide) and Na+ (mexiletine) channel blockers were administered p.o. simultaneously with oxaliplatin or oxalate on days 1 and 2.ResultsOxaliplatin (4 mg/kg) induced cold hyperalgesia and increased in the transient receptor potential melastatin 8 (TRPM8) mRNA levels in the dorsal root ganglia (DRG). Furthermore, oxalate (1.3 mg/kg) significantly induced the increase in TRPM8 protein in the DRG. Treatment with oxaliplatin and oxalate (500 μM for each) also increased the TRPM8 mRNA levels and induced Ca2+ influx and nuclear factor of activated T-cell (NFAT) nuclear translocation in cultured DRG cells. These changes induced by oxalate were inhibited by nifedipine, diltiazem and mexiletine. Interestingly, co-administration with nifedipine, diltiazem or mexiletine prevented the oxaliplatin-induced cold hyperalgesia and increase in the TRPM8 mRNA levels in the DRG.ConclusionsThese data suggest that the L type Ca2+ channels/NFAT/TRPM8 pathway is a downstream mediator for oxaliplatin-induced cold hyperalgesia, and that Ca2+ channel blockers have prophylactic potential for acute neuropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.