The development of self-propelled motors that mimic biological motors is an important challenge for the transport of either themselves or some material in a small space, since biological systems exhibit high autonomy and various types of responses, such as taxis and swarming. In this perspective, we review non-living systems that behave like living matter. We especially focus on nonlinearity to enhance autonomy and the response of the system, since characteristic nonlinear phenomena, such as oscillation, synchronization, pattern formation, bifurcation, and hysteresis, are coupled to self-motion of which driving force is the difference in the interfacial tension. Mathematical modelling based on reaction-diffusion equations and equations of motion as well as physicochemical analysis from the point of view of the molecular structure are also important for the design of non-living motors that mimic living motors.
A variety of moving objects driven by chemical energy have been reported. In this Minireview, we focus on self-propelled objects driven by interfacial tension and explain three types of basic mechanisms for such self-propelled motion, that is, driven by a) surface tension difference, b) contact angle difference, and c) axisymmetric swirling flow in a droplet. Simple behavior induced from the basic mechanisms is then extended by coupling to a chemical reaction or increasing the number of moving objects. Even though the chemicals used here are still simple, the extended systems could show characteristic nonlinear behavior, such as reciprocating motion, oscillatory motion, and spatiotemporal pattern formation. Combining the dynamical information about these characteristic motions with the knowledge of molecular structures will lead to the development of more advanced self-propelled objects. We believe this Minireview can help chemists in investigating self-propelled objects displaying various functional motions observed in a biological system.
We demonstrated mode-switching of self-motion coupled with diffusion of molecules at a solid/liquid interface. A camphor boat moved spontaneously on water and the mode of self-motion depended on the setup of the boat. When a camphor disk was connected to the center of a larger plastic plate, intermittent motion (alternating between rest and rapid motion) was observed. When the position of the camphor disk was changed from the center to one of its edges, the period of intermittent motion decreased, and intermittent motion changed to continuous motion. The features of this self-motion and mode-switching were qualitatively reproduced by a numerical calculation using a mathematical model that incorporates the distribution of camphor molecules at the solid/liquid interface.
Quantitative information on the parameters associated with self-propelled objects would enhance the potential of this research field; for example, finding a realistic way to develop a functional self-propelled object and quantitative understanding of the mechanism of self-motion. We therefore estimated five main parameters, including the driving force, of a camphor boat as a simple self-propelled object that spontaneously moves on water due to difference in surface tension. The experimental results and mathematical model indicated that the camphor boat generated a driving force of 4.2 μN, which corresponds to a difference in surface tension of 1.1 mN m(-1). The methods used in this study are not restricted to evaluate the parameters of self-motion of a camphor boat, but can be applied to other self-propelled objects driven by difference in surface tension. Thus, our investigation provides a novel method to quantitatively estimate the parameters for self-propelled objects driven by the interfacial tension difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.