Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease that can progress to liver fibrosis. Recent clinical advance suggests a reversibility of liver fibrosis, but the cellular and molecular mechanisms underlying NASH resolution remain unclarified. Here, using a murine diet-induced NASH and the subsequent resolution model, we demonstrate direct roles of CD8+ tissue-resident memory CD8+ T (CD8+ Trm) cells in resolving liver fibrosis. Single-cell transcriptome analysis and FACS analysis revealed CD69+CD103−CD8+ Trm cell enrichment in NASH resolution livers. The reduction of liver CD8+ Trm cells, maintained by tissue IL-15, significantly delayed fibrosis resolution, while adoptive transfer of these cells protected mice from fibrosis progression. During resolution, CD8+ Trm cells attracted hepatic stellate cells (HSCs) in a CCR5-dependent manner, and predisposed activated HSCs to FasL-Fas-mediated apoptosis. Histological assessment of patients with NASH revealed CD69+CD8+ Trm abundance in fibrotic areas, further supporting their roles in humans. These results highlight the undefined role of liver CD8+ Trm in fibrosis resolution.
Gut-derived microbial antigens trigger the innate immune system during acute liver injury. During recovery, regulatory immunity plays a role in suppressing inflammation; however, the precise mechanism underlying this process remains obscure. Here, we find that recruitment of immune-regulatory classical dendritic cells (cDCs) is crucial for liver tolerance in concanavalin A-induced acute liver injury. Acute liver injury resulted in enrichment of commensal Lactobacillus in the gut. Notably, Lactobacillus activated IL-22 production by gut innate lymphoid cells and raised systemic IL-22 levels. Gut-derived IL-22 enhanced mucosal barrier function and promoted the recruitment of regulatory cDCs to the liver. These cDCs produced IL-10 and TGF-β through TLR9 activation, preventing further liver inflammation. Collectively, our results indicate that beneficial gut microbes influence tolerogenic immune responses in the liver. Therefore, modulation of the gut microbiota might be a potential option to regulate liver tolerance.
Background and aimsInterferon (IFN)- free direct antiviral agents (DAAs) with rapid HCV eradication might evoke immunological reconstitutions, and some early recurrences of HCC after IFN-free DAAs have been reported. This study aimed to investigate whether natural killer group 2, member D (NKG2D) predicts early emergence of HCC after IFN-free DAAs.MethodsWe conducted a clinical practice-based observational study of 101 patients infected with genotype 1 HCV who received IFN-free (DAAs), and stratified them into those who did or did not develop early (i.e., during the 6-month surveillance period following treatment.) recurrence or occurrence of clinically evident HCC. We also analyzed the peripheral blood mononuclear cells, both before treatment and at end of treatment (EOT), of 24 of the patients who received IFN-free DAAs, and 16 who received IFN-combined protease inhibitor.ResultsWe found early emergence of clinically evident HCC after IFN-free DAAs in 12 (12%) patients. Higher pre-treatment NKG2D expression, higher FIB-4 score, previous HCC history and failure to achieve sustained viral response were significant factors correlating to early HCC emergence. After IFN-free DAAs, a rapid decrease of NKG2D at EOT correlated with early HCC emergence in the IFN-free DAA-treated patients, but not in patients treated with the IFN-combined regimen. The decrease of NKG2D until EOT was predictive of early HCC emergence at a cut-off of -52% (AUC = 0.92).ConclusionsOn-treatment decrease of NKG2D may be a useful predictor of early emerging HCC in patients treated with IFN-free DAAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.