Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and 8 handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional.
Summary
Purpose
Past studies reported more widespread structural brain abnormalities in patients with left compared to right temporal lobe epilepsy (TLE), but the profile of these differences remain unknown. This study investigated the relationship between cortical thinning, white matter compromise, epilepsy variables, and the side of seizure onset, in patients with TLE.
Methods
We performed diffusion tensor imaging tractography and cortical thickness analyses of 18 patients with left TLE (LTLE), 18 patients with right TLE (RTLE), and 36 controls. We investigated the relationship between brain structural abnormalities, side of seizure onset, age of seizure onset, and disease duration.
Key findings
TLE groups displayed cortical thinning and white matter compromise, predominately on the side ipsilateral to the seizure onset. Relative to RTLE, patients with LTLE showed more widespread abnormalities, particularly in white matter fiber tracts. Greater compromise in white matter integrity was associated with earlier age of seizure onset, while cortical thinning was marginally associated with disease duration.
Significance
These data support previous findings of LTLE showing greater structural compromise than RTLE, and suggest that mechanisms may not be uniform for gray and white matter compromise in patients with LTLE and RTLE. These results may indicate that LTLE is different than RTLE, possibly due to greater vulnerability of the left hemisphere to early injury and the progressive effects of seizures.
The results support earlier findings of abnormal variability and scatter of functional maps in autism. They are consistent with evidence from other studies suggesting early-onset disturbances in the development of cerebello-thalamo-cortical pathways in autism.
Purpose:To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE).
Materials and Methods:This study was conducted with institutional review board approval and in compliance with HIPAA regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.