Objective. Podocytes have highly differentiated functions and are extremely difficult to grow; thus, damage of podocytes is associated with glomerular dysfunction. Desquamated podocytes can be detected in urine of patients with severe renal impairment. Unlike the rapidly progressive glomerular damage in glomerulonephritis, only a few desquamated podocytes are usually detected in diabetic nephropathy (DN). It is not clear whether the low podocyte count in DN is due to limitation of the conventional method or true pathological feature. The aim of this study was to compare the conventional method with a newly modified method in detecting podocytes in morning urine samples of patients with DN. Materials and Methods. The study subjects were patients with type 2 diabetes. Urine samples from these patients were analyzed by the conventional method (Cytospin®) and the modified method (SurePath™). We determined the rate of detection of urinary podocytes and the number of detected cells. Results. The detection rate and podocyte count were significantly higher by the modified method than by the conventional method. The differences in the detection rates and numbers of podocytes were not significant between patients with normoalbuminuria and those with macroalbuminuria. However, they were significant in patients with microalbuminuria. The number of podocytes in the urine correlated significantly with the albumin-to-creatinine ratio, but not with the estimated glomerular filtration rate. Conclusions. The true number of urinary podocytes, as measured by the modified SurePath™-based method, in patients with DN is much higher than that estimated by the conventional method.
Two-thirds of urate is excreted via the renal pathway and the remaining one-third via the extra-renal pathway, the latter mainly via the intestine in healthy individuals. ABCG2, a urate exporter, is expressed in various tissues including the kidney and intestine, and its dysfunction leads to hyperuricemia and gout. ABCG2 is regarded as being responsible for most of the extra-renal urate excretion. However, the extra-renal urate excretion capacity via ABCG2 remains undefined in end-stage kidney diseases. Therefore, we evaluated the capacity of extra-renal ABCG2 using 123 anuric hemodialysis patients whose urate excretion depended on only the extra-renal pathway. ABCG2 function in each participant was estimated based on ABCG2 dysfunctional variants. We computed the uric acid pool (PoolUA) from bodyweight and serum urate level (SUA) using previously reported radio-isotopic data, and we analyzed the association between ABCG2 function and the PoolUA. SUA and PoolUA increased significantly with ABCG2 dysfunction, and extra-renal ABCG2 could excrete up to approximately 60% of the daily uric acid turnover in hemodialysis patients. Our findings indicate that the extra-renal urate excretion capacity can expand with renal function decline and highlight that the extra-renal pathway is particularly important in the uric acid homeostasis for patients with renal dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.