The effects of operating conditions in the spray-congealing process on the release and the micromeritic properties of clarithromycin (CAM) wax matrix were evaluated. CAM wax matrix with 30% CAM, 60% glyceryl monostearate (GM) and 10% aminoalkyl methacrylate copolymer E (AMCE) was manufactured at various atomizer wheel speeds and liquid feed rates with a spray dryer. Release of CAM from the matrix exhibited a two-phase pattern, probably due to the dissolution of the fine portions broken on the surface of the matrix. The slope and the extrapolated y-intercept of the subsequent release pattern were defined as the release rate and the initial amount of release of CAM from the matrix, respectively. These release parameters, as well as the volume median diameter and the specific surface area of matrix, were selected as response variables, and multiple regression analysis was performed. For specific surface area and initial amount of release, a minimum point was observed on the contour curve when the atomizer wheel speed was constant and the liquid feed rate was varied. For the release rate, a maximum point was observed on the contour curve under the same conditions. These points were considered preferable for masking the bitter taste of CAM preparation. Microscopic observation revealed that a small spherical matrix with a smooth surface could be obtained with a high atomizer wheel speed and optimum liquid feed rate. This matrix also possessed excellent properties for taste masking, with small initial amount of release and subsequent high rate of release. In conclusion, the congealing speed of melt droplets was the dominant factor in masking the bitter taste of CAM.
An in vitro cell culture system for estimating the human blood-brain barrier (BBB) permeability of drugs is required for the development of drugs with effects on the central nervous system. In this study, cultured human brain microvascular endothelial cells (hBME) were characterized. hBME cells exhibited concentration-dependent uptake of L-Leu, L-Glu and L-Lys with K(m) values of 51.1+/-23.1 microM, 163.3+/-79.8 microM and 72.4+/-56.6 microM, respectively. The cellular accumulation of rhodamine123 in hBME cells was unaffected by P-glycoprotein (P-gp) substrates (cyclosporin A, quinidine and verapamil), while the accumulation in human P-gp-overexpressing cells was significantly increased in the presence of these P-gp substrates. RT-PCR revealed that hBME cells expressed large neutral amino acid transporter 1 (LAT1) and its associated molecule (4F2hc), excitatory amino acid transporter 3 (EAAT3), cationic amino acid transporter 1 (CAT1), glucose transporter 1 (GLUT1), monocarboxylic acid transporter 1 (MCT1) and multidrug resistance-associated protein 1 (MRP1). However, no expression of multidrug resistance protein 1 (MDR1) was detected. The results suggest that these amino acid transporters are functionally expressed at the human BBB, and that hBME cells retain the in vivo BBB transport functions and expression characteristics. Consequently, hBME cells should be a useful tool for studies of the human BBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.