For a quick and stable estimation of earthquake damaged buildings worldwide, using Phased Array type L-band Synthetic Aperture Radar (PALSAR) loaded on the Advanced Land Observing Satellite (ALOS) satellite, a model combining the usage of satellite synthetic aperture radar (SAR) imagery and Japan Meteorological Agency (JMA)-scale seismic intensity is proposed. In order to expand the existing C-band SAR based damage estimation model into L-band SAR, this paper rebuilds a likelihood function for severe damage ratio, on the basis of dataset from Japanese Earth Resource Satellite-1 (JERS-1)/SAR (L-band SAR) images observed during the 1995 Kobe earthquake and its detailed ground truth data. The model which integrates the fragility functions of building damage in terms of seismic intensity and the proposed likelihood function is then applied to PALSAR images taken over the areas affected by the 2007 earthquake in Pisco, Peru. The accuracy of the proposed damage estimation model is examined by comparing the results of the analyses with field investigations and/or interpretation of high-resolution satellite images.
The performance of an urban electric utility distribution system was evaluated for the February 2001 Nisqually earthquake. The restoration rate of the lifeline following the event was determined; the distribution of outage durations was estimated; and correlations between lifeline damage and instrumental Modified Mercalli intensity, peak ground velocity, and peak ground acceleration values were ascertained using a GIS (geographical information systems) approach. Using a logit regression analysis, a fragility curve was developed for the lifeline in a manner similar to O'Rourke's formulation of water-line performance (O'Rourke et. al. 2000). Extrapolation of the model to the Seattle Fault earthquake scenario was made to demonstrate its feasibility for prediction.
The assessmentmodel for post-earthquake lifeline serviceability of electric power, water, and city gas supply systems has been modified and applied to the Great East Japan Earthquake Disaster with the detailed and updated data required for damage assessment. The estimated and observed population affected after the main shock and its decreasing process has been compared for validation on a prefectural basis. Reasonable agreement has been found between the estimation and observation except for discrepancies attributed to unconsidered factors, such as damage to hierarchically high facilities caused by tsunami, liquefaction, and/or ground shaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.