In order to effectively and quickly clean the surface of semiconductor silicon wafers, the fluid flow is one of the significant issues. For a batch-type silicon wafer wet cleaning bath, a slim water injection nozzle consisting of a dual tube was studied, based on theoretical calculations and experiments. A thin inner tube was placed at the optimum position in the water injection nozzle. Such a simple design could make the water injection direction normal and the water velocity profile symmetrical along the nozzle. The water flow in the wet cleaning bath was observed using a bluecolored ink tracer. When the nozzle developed in this study was placed at the bottom of the bath, a fast and symmetrical upward water stream was formed between and around the wafers.
Using a complex ambient atmosphere containing vapors of an organic compound, acid and water, the molecular adsorption and desorption behavior on a silicon surface was studied using the in-situ measurement of a quartz crystal microbalance linked to the rate theory. Because the behavior of diethylphthalate (DEP) could be reproduced assuming a single-component system, acetic acid (ACA) and DEP are concluded to separately exist in the water film and at the water film surface, respectively. This conclusion was obtained from both the adsorption and desorption behaviors. The process developed in this study is useful for determining the layer in which chemical compounds are present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.