These 62 patients with the Kabuki make-up syndrome (KMS) were collected in a collaborative study among 33 institutions and analyzed clinically, cytogenetically, and epidemiologically to delineate the phenotypic spectrum of KMS and to learn about its cause. Among various manifestations observed, most patients had the following five cardinal manifestations: 1) a peculiar face (100%) characterized by eversion of the lower lateral eyelid; arched eyebrows, with sparse or dispersed lateral one-third; a depressed nasal tip; and prominent ears; 2) skeletal anomalies (92%), including brachydactyly V and a deformed spinal column, with or without sagittal cleft vertebrae; 3) dermatoglyphic abnormalities (93%), including increased digital ulnar loop and hypothenar loop patterns, absence of the digital triradius c and/or d, and presence of fingertip pads; 4) mild to moderate mental retardation (92%); and 5) postnatal growth deficiency (83%). Thus the core of the phenotypic spectrum of KMS is rather narrow and clearly defined. Many other inconsistent anomalies were observed. Important among them were early breast development in infant girls (23%), and congenital heart defects (31%), such as a single ventricle with a common atrium, ventricular septal defect, atrial septal defect, tetralogy of Fallot, coarctation of aorta, patent ductus arteriosus, aneurysm of aorta, transposition of great vessels, and right bundle branch block. Of the 62 KMS patients, 58 were Japanese, an indication that the syndrome is fairly common in Japan. It was estimated that its prevalence in Japanese newborn infants is 1/32,000. All the KMS cases in this study were sporadic, the sex ratio was even, there was no correlation with birth order, the consanguinity rate among the parents was not high, and no incriminated agent was found that was taken by the mothers during early pregnancy. Three of the 62 patients had a Y chromosome abnormality involving a possible common breakpoint (Yp11.2). This could indicate another possibility, i.e., that the KMS gene is on Yp11.2 and that the disease is pseudoautosomal dominant. These findings are compatible with an autosomal dominant disorder in which every patient represents a fresh mutation. The mutation rate was calculated at 15.6 X 10(6).
Recent microarray analyses showed that the S100 family contains members that are candidate diagnostic markers or therapeutic targets. In the present study, to evaluate the involvement of S100A6 in pancreatic cancer and its clinical usefulness for diagnosis, we examined S100A6 mRNA expression in pancreatic tissues and pancreatic juice from patients with different pancreatic diseases. To investigate the role of S100A6 in carcinogenesis of pancreatic cancer and the potential of S100A6 as a diagnostic marker for early detection of pancreatic cancer, we did immunohistochemistry and microdissection-based mRNA analysis of pancreatic normal ducts, pancreatic intraepithelial neoplasias, and invasive ductal carcinomas. We also used in vitro experiments and microarray analysis with RNA interference to evaluate the functional role of S100A6 and its potential as a therapeutic target for pancreatic cancer. S100A6 mRNA levels were significantly higher in carcinoma specimens than in nonneoplastic tissues. In pancreatic juice, there was a significant difference in S100A6 expression between patients with carcinoma and those with nonneoplastic disease. Receiver operating characteristic curves revealed that S100A6 might be a useful marker for diagnosis of pancreatic cancer. Immunohistochemistry and microdissection-based analysis showed differential expression of S100A6 among normal ducts, pancreatic intraepithelial neoplasias, andinvasive ductal carcinomas. In vitro data showed that inhibition of S100A6 decreased proliferation and invasiveness of cancer cells, and these findings were supported by microarray data. Our present results suggest that quantitation of S100A6 mRNA is a promising tool for diagnosis of pancreatic cancer, and that S100A6 may be a promising therapeutic target for pancreatic cancer.Pancreatic cancer is the fifth most common cause of tumor-related deaths in the industrialized world (1, 2). Fewer than 10% to 20% of patients are candidates for surgery at the time of presentation, and <20% of patients who undergo curative resection are alive after 5 years (3, 4). Despite recent progress, there is no modality for early detection of pancreatic cancer. With the exception of a recent report describing successful use of adjuvant chemotherapy in the ESPAC-1 trial (5), there has been no report of effective treatment of advanced pancreatic cancer, including local and metastatic disease. To improve the prognosis of patients with pancreatic cancer, we need effective screening strategies and effective treatments for the disease once it has been detected.Microarray analysis allows simultaneous monitoring of the expression of thousands of genes and is a powerful tool for identifying genes associated with pancreatic carcinoma. Microarray analyses recently showed expression of S100A2 and S100A6 to be up-regulated in pancreatic cancer (6 -8). S100 family proteins are small Ca 2+ , Zn 2+ , and Cu 2+ binding proteins of the EF-hand type and have been implicated in regulation of a variety of intracellular and extracellular p...
Continuous magnetic stimulation was effective on urethral closure and bladder inhibition, and as treatment of urinary incontinence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.