The fabrication processes of p-type regions for vertical GaN power devices are investigated. A p-type body layer in a trench gate metal-oxide-semiconductor field-effect transistor requires precise control of the effective acceptor concentration, which is equal to the difference between the Mg acceptor concentration (Na) and the compensating donor concentration (Nd). The carbon atoms incorporated during growth via metalorganic vapor phase epitaxy substitute nitrogen sites (CN) and function as donor sources in a p-type GaN layer. Since interstitial H atoms (Hi) also compensate holes, their removal from an Mg-doped layer is crucial. Extended anneals to release H atoms cause the formation of extra hole traps. The p+ capping layer allows effective and rapid removal of H atoms from a p-type body layer owing to the electric field across the p+/p– junction. On the other hand, selective area p-type doping via Mg ion implantation is needed to control the electrical field distribution at the device edge. Ultrahigh-pressure annealing (UHPA) under a nitrogen pressure of 1 GPa enables post-implantation annealing up to 1753 K without thermal decomposition. Cathodoluminescence spectra and Hall-effect measurements suggest that the acceptor activation ratio improves dramatically by annealing above 1673 K as compared to annealing at up to 1573 K. High-temperature UHPA also induces Mg atom diffusion. We demonstrate that vacancy diffusion and the introduction of H atoms from the UHPA ambient play a key role in the redistribution of Mg atoms.
Sources of carrier compensation in n-type and p-type GaN layers grown by metalorganic vapor phase epitaxy were quantitatively identified by a combination of Hall-effect analysis and deep level transient spectroscopy. For n-type GaN, we identified three electron compensation sources: residual carbon atoms likely sitting on nitrogen sites (CN), an electron trap at the energy level of EC –0.6 eV (the E3 trap), and self-compensation appearing with increasing donor concentration. We showed that the CN also play a key role in hole compensation in p-type GaN by forming donor-like charged states. We also investigated the reduction of acceptor concentrations (Na) in highly Mg-doped GaN. Atomic-resolution scanning transmission electron microscopy revealed that electrically inactive Mg atoms of 3/2 atomic layers are segregated at the boundary of pyramidal inversion domains. The Na reduction can be explained by this Mg segregation.
Diffusion in a magnesium (Mg)-implanted homoepitaxial GaN layer during ultra-high-pressure annealing (UHPA, in ambient nitrogen, under 1 GPa) was investigated. Annealing at 1573 K resulted in Mg-segregation at the edge of the implanted region, which was suppressed using a higher temperature of 1673 K. Hydrogen (H) atoms were incorporated during the UHPA, resulting in the Mg and H developing the same diffusion profile in the deeper region. The diffusion coefficient of the Mg-implanted sample was 3.3 × 10 −12 cm 2 s −1 at 1673 K from the annealing duration dependence, 30 times larger than that of the epitaxial Mg-doped sample, originating from ion implantation-induced defects.
Defects in Mg ion-implanted GaN epitaxial layers formed after annealing at 1573 K and at 1753 K were analyzed by transmission electron microscopy. Degradation of the GaN surface, which occurs at temperatures higher than about 1573 K, was avoided by ultra-high-pressure annealing under a N2 atmosphere at 1 GPa. Annealing for damage recovery in ion-implanted compound semiconductors generally requires temperatures at about two-thirds of their melting point, which is reportedly 2518 K or higher for GaN. Thus, defect analysis in ion-implanted GaN annealed at temperatures higher than 1573 K is necessary to understand the defect recovery. Atomic-resolution transmission electron microscopy analysis showed that interstitial-type extended defects and inversion domains with Mg segregation were formed during the annealing at 1573 K. These defects were not observed in a sample annealed at 1753 K; instead, vacancy-type extended defects were formed. Such evolution of defects can be explained by previous theoretical studies that indicated that the migration energy of vacancy-type defects is higher than that of interstitial-type defects. Moreover, the formation of vacancy-type extended defects implies a reduction in the concentrations of vacancies and their complexes. Since the vacancies and their complexes can compensate for Mg acceptors, their reduced concentration should increase the acceptor activation efficiency. Also, the disappearance of Mg segregation during high-temperature annealing should increase the activation efficiency since the segregated Mg atoms are electrically inactive. It is thus concluded that the evolution of defects caused by high-temperature annealing above 1573 K increases the activation efficiency of acceptors in Mg ion-implanted GaN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.