Structural strengths of the piping and components in NPPs have been designed with seismic margin. They are classified seismically S, B and C class in terms of the influence rate to nuclear safety. For the highest seismic class (Class S) equipment, it is clarified that they have enough seismic margins against design seismic conditions by shaking table tests or numerical simulations. However, for the lower seismic class (Class B and C) equipment, their seismic margins have not been clarified quantitatively.
In this paper, in order to evaluate seismic robustness of the lower seismic class equipment with no clarification of seismic margin, seismic influences of the lower seismic class equipment in NPPs damaged by actual large earthquakes have been surveyed and sorted as a database, and the integrity of the lower class equipment have been discussed.
Seismic effects on 24 plants damaged by the recent large 6-earthquakes are surveyed, sorted as a database, and investigated. As a result, a total of 29 cases of function deterioration or loss were observed. Considering the total number of components and piping, the frequency of those cases in class B and C components and piping was low. And also, as it is found there are a few cases of degradation or loss of function in the equipment installed on the bedrock or in the buildings.
In 2000FY, a 3 year program of eroded piping tests was initiated with the following objectives: 1) to ascertain the seismic safety margins for eroded piping designed under the current seismic design code, 2) to clarify the elasto-plastic response and ultimate strength of eroded nuclear piping. It was intended to carry out a series of tests on eroded piping components and eroded piping systems. This paper is a report on the program of eroded piping tests.
In 2000FY, a 3 year program of eroded piping tests was initiated with the following objectives: 1) to ascertain the seismic safety margins for eroded piping designed under the current seismic design code, 2) to clarify the elasto-plastic response and ultimate strength of eroded nuclear piping. It was intended to carry out a series of tests on eroded piping components and eroded piping systems. This paper is a report on the program of eroded piping tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.