In the study of complex systems one of the major concerns is the detection and characterization of causal interdependencies and couplings between different subsystems. The nature of such dependencies is typically not only nonlinear but also asymmetric and thus makes the use of symmetric and linear methods ineffective. Moreover, signals sampled from real world systems are noisy and short, posing additional constraints on the estimation of the underlying couplings. In this article, we compare a set of six recently introduced methods for quantifying the causal structure of bivariate time series extracted from systems with complex dynamical behavior. We discuss the usefulness of the methods for detecting asymmetric couplings and directional flow of information in the context of uni- and bidirectionally coupled deterministic chaotic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.