Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.
An estimated one-third of the world's population is latently infected with Mycobacterium tuberculosis, the etiologic agent of tuberculosis. Here, we demonstrate that, unlike wild-type M. tuberculosis, a strain of M. tuberculosis disrupted in the mce1 operon was unable to enter a stable persistent state of infection in mouse lungs. Instead, the mutant continued to replicate and killed the mice more rapidly than did the wild-type strain. Histological examination of mouse lungs infected with the mutant strain revealed diffusely organized granulomas with aberrant inflammatory cell migration. Murine macrophages infected ex vivo with the mutant strain were reduced in their ability to produce tumor necrosis factor ␣, IL-6, monocyte chemoattractant protein 1, and nitric oxide (NO), but not IL-4. The mce1 mutant strain complemented with the mce1 genes stimulated tumor necrosis factor ␣ and NO production by murine macrophages at levels stimulated by the wild-type strain. These observations indicate that the mce1 operon mutant is unable to stimulate T helper 1-type immunity in mice. The hypervirulence of the mutant strain may have resulted from its inability to stimulate a proinflammatory response that would otherwise induce organized granuloma formation and control the infection without killing the organism. The mce1 operon of M. tuberculosis may be involved in modulating the host inflammatory response in such a way that the bacterium can enter a persistent state without being eliminated or causing disease in the host. Approximately 60% of people who become infected with Mycobacterium tuberculosis develop asymptomatic latent infection (1). This reservoir of latently infected individuals has a 2-23% lifetime risk of developing active disease, referred to as reactivation tuberculosis (1). How M. tuberculosis establishes and maintains latent infection in an animal host is poorly understood. Several candidate M. tuberculosis genes have been recently reported to be important for persistence in the mouse model of tuberculosis. They include the isocitrate lyase gene (icl), mycolic acid cyclopropane synthase gene (pca), and a two-component response regulator called mprA (2)(3)(4). In each case, the disruption of the gene led to attenuation of the mutant strains in the mouse model of infection, whereas their in vitro growth kinetics remained similar to that of the respective wild-type strain (2-4).We reported previously the identification of a M. tuberculosis gene mce1A (Rv0169, Sanger Centre genome sequence designation) that conferred on a nonpathogenic Escherichia coli strain an ability to enter nonphagocytic cells (5). The encoded product facilitated uptake of synthetic microspheres into nonphagocytic cells, and an active domain of the protein was recently shown to cause cytoskeletal rearrangement in HeLa cells that was both microfilament-and microtubule-dependent (6, 7). The gene mce1A is located in a putative operon called mce1 containing 12 genes in the M. tuberculosis H37Rv genome (8) (Fig. 1A). The genome of M. tuberculosi...
The ability to gain entry and resist the antimicrobial intracellular environment of mammalian cells is an essential virulence property of Mycobacterium tuberculosis. A purified recombinant protein expressed by a 1362 bp locus (mce1) in the M. tuberculosis genome promoted uptake into HeLa cells of polystyrene latex microspheres coated with the protein. N‐terminus deletion constructs of Mce1 identified a domain located between amino acid positions 106 and 163 that was needed for this cell uptake activity. Mce1 contained hydrophobic stretches at the N‐terminus predictive of a signal sequence, and colloidal gold immunoelectron microscopy indicated that the corresponding native protein is expressed on the surface of the M. tuberculosis organism. The complete M. tuberculosis genome sequence revealed that it contained four homologues of mce (mce1, mce2, mce3, mce4) and that they were all located within operons composed of genes arranged similarly at different locations in the chromosome. Recombinant Mce2, which had the highest level of identity (67%) to Mce1, was unable to promote the association of microspheres with HeLa cells. Although the exact function of Mce1 is still unknown, it appears to serve as an effector molecule expressed on the surface of M. tuberculosis that is capable of eliciting plasma membrane perturbations in non‐phagocytic mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.