Five types of multilayer nonwovens for clothing and footwear parts were obtained by the adhesive bonding method. The thickest middle layer of the material consists of evenly laid coarse camel or sheep fibers or of reconstituted cotton fibers from flaps, the upper and lower layers consist of knitwear, and polymer adhesive is located between the layers. The layers are bonded by thermal pressing at a temperature of 150 ± 5°C for 2.0 ± 0.2 min. The microstructure and morphology of fibers, polymer adhesive, and multilayer nonwoven fabric were investigated by FT-IR spectroscopy, SEM, and X-ray phase analysis. The chemical interaction between wool fibers and polymer adhesive, the geometric dimensions and shape of the fibers, the structure and morphology of the cross section of the layers of the material, and the change in the degree of crystallinity of the material have been established. The investigated coarse and thick fibers of camel and sheep wool are more suitable for the production of nonwoven textile material. In the process of thermal exposure, the molten polymer diffuses into the structure of the nonwoven layer and knitted fabric. The diffusion and excellent adhesion of the molten polymer to the fibers ensures the solidity and strength of the composite. The developed design provides high strength of the material as a whole and adhesive strength between layers, high heat-retaining properties, and the use of a mesh adhesive film provides sufficient air and vapor permeability.
A layered composite material for shoes was obtained by the adhesive bonding method. The middle layer of the material consists of a non-woven material made from a mixture of camel and sheep wool, the top and bottom layers consist of cotton jersey, and a polymer adhesive is located between the layers. The layers are bonded by thermal duplication at a temperature of 150±5°C for 2.0±0.2 minutes. As an optimization parameter, the heat-retaining capacity of the material was chosen depending on the thickness, surface density and percentage of camel wool. The strength and thermophysical properties of the layered material are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.