Few studies have combined molecular- and macroscopic-scale investigations with surface complexation model (SCM) development to predict trace metal speciation and partitioning in aqueous systems over a broad range of conditions. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute lead(II [Pb(II)] sorption onto 2-line ferrihydrite in NaNO3 solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data together with potentiometric titration and pH edge data was a much more rigorous test of the TLM than fitting pH edge data alone. When combined with spectroscopic data, the choices of feasible surface species/site types were limited to a few. In agreement with the spectroscopic data, very good fits of the isotherm data were obtained with a two-species, one-site model using the bidentate-mononuclear/monodentate-mononuclear species pairs, ((is equivalent)FeO)2Pb/(is equivalent)FeOHPb2+ and ((is equivalent)FeO)2Pb/ (is equivalent)FeOPb+-NO3-. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data but unacceptable fits of the isotherm data. Surprisingly, best-fit equilibrium "constants" for the Pb(II) surface complexes required adjustment outside the pH range of 4.5-5.5 in order to fit the isotherm data. In addition, a surface activity term was needed to reduce the ionic strength dependence of sorption forthe species pair, ((is equivalent)FeO)2Pb/(is equivalent)FeOHPb2+. In light of this, the ability of existing SCMs to predict Pb(II) sorption onto 2-line ferrihydrite over a wide range of conditions seems questionable. While many advances have been made over the past decade, much work still needs to be done in fine-tuning the thermodynamic framework and databases for the SCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.