Abstract.— Three experiments investigating larval stocking densities of summer flounder from hatch to metamorphosis, Paralichthvs dentalus, were conducted at laboratory‐scale (75‐L aquaria) and at commercial scale (1,000‐L tanks). Experiments 1 and 2 at commercial scale tested the densities of 10 and 60 larvae/L, and 10, 20, and 30/L, respectively. The laboratory scale experiment tested the densities of 10, 20, 30, and 40 larvae/L. Experiments were carried out in two separate filtered, flow‐through seawater systems at URI Narragansett Bay Campus (laboratory‐scale), and at GreatBay Aquafarms, Inc. (commercial‐scale). At both locations, the larvae were raised in a “greenwater” culture environment, and fed rotifers and brine shrimp nauplii according to feeding regimes established for each location. Water temperature was maintained at 21C (± 2) and 19C (± 1) for the duration of laboratory and commercial experiments, respectively. Experiments 1 and 2 at the commercial location were terminated at 42 and 37 d post hatch (dph), respectively, and the laboratory experiment lasted 34 DPH. Larvae initially stocked at 10/L grew to an average length of 14.3 and 14.4 mm, and were significantly larger (P < 0.05) than those stocked at 30/L (13.1 mm) and 60/L (11.7 mm) in commercial scale experiments I and 2, respectively. At laboratory scale, no significant differences in length were detected, although mean total length tended to decrease with increasing stocking density (average length of 14.2, 13.3, 12.7, and 12.7 mm for treatments of 10, 20, 30, and 40/L, respectively). Final survival percentage was not affected by stocking density in either commercial experiment, and was 61 and 40% for treatments of 10 and 60/L in Experiment 1, respectively, and 62, 59, and 56% for Experiment 2, respectively. Similarly, there was no significant difference in final survival percentage among treatments in the laboratory experiment, which averaged 59, 55, 56, and 37% for treatments of 10, 20, 30, and 40L. respectively. Since larval length was not different between the intermediate densities (20 and 30 Iarvae/L), and because high‐density rearing can produce a much greater numerical yield per tank, we recommend a density of 30 larvaen as an optimal stocking density for the hatchery production of summer flounder.