The lens power decreases with age, due mainly to a decrease in the contribution of the gradient. The use of a constant equivalent refractive index value to calculate lens power with the lens maker formula will underestimate the power of young lenses and overestimate the power of older lenses.
Corneal biomechanics is an essential parameter for developing diagnostic and treatment methods of corneal-related diseases. It is widely accepted that corneal mechanical strength stems from the stroma's collagenous composition. However, more comprehensive insight into the mechanical properties within the stroma is needed to improve current corneal diagnostic and treatment techniques. The purpose of this study was to perform elasticity characterization of anterior and posterior stromal regions of human corneas using atomic force microscopy (AFM). Nine pairs of human whole globes were placed in 20% Dextran solution, cornea side down, to restore the corneal thickness to physiological levels (400-600μm). The epithelium and Bowman's membrane were removed from all eyes. Anterior stromal AFM elasticity testing was then performed on left (OS) eyes. Additional stroma was removed from right (OD) eyes to allow posterior stromal measurements at a depth of 50% of the original thickness. All experiments were performed with corneas submerged in 15% Dextran to maintain corneal hydration. The results of the study showed that the Young's modulus of elasticity of the anterior stroma (average: 281 ± 214kPa; range: 59-764kPa) was significantly higher than that of the posterior stroma (average: 89.5 ± 46.1kPa; range: 29-179kPa) (p=0.014). In addition, a linear relationship was found between the posterior stromal elasticity and anterior stromal elasticity (p=0.0428). On average, the elasticity of the posterior stroma is 39.3% of the anterior stroma. In summary, there appears to be an elasticity gradient within the corneal stroma, which should be considered in the design and development of corneal diagnostic and treatment methods to enhance efficacy.
The force necessary to change the lens diameter and lens power increases with age in human and monkey lenses. The results agree with the Helmholtz theory of accommodation and with presbyopia theories that predict that the force required to disaccommodate the lens increases with age.
The purpose of this project was to assess anterior and posterior corneal stromal elasticity after corneal collagen cross linking (CXL) treatment in human cadaver eyes using Atomic Force Microscopy (AFM) through indentation. Twenty four human cadaver eyes (12 pairs) were included in this study and divided into 2 groups (6 pairs per group). In both groups, the left eye (OS) served as a control (no riboflavin or CXL treatment was performed) and the right eye (OD) underwent CXL treatment (30 minutes of riboflavin pretreatment followed by 30 minutes of exposure to 3mW/cm2 of ultraviolet light). In group 1, the anterior stroma was exposed by manual delamination of approximately 50μm of the corneal stroma including Bowman’s membrane. In group 2, the posterior stroma was exposed by delamination of the anterior 50% of the corneal stroma including Bowman’s membrane. Delamination was performed after crosslinking treatment in the case of the treated eyes. In all eyes, the stromal elasticity was quantified using AFM through indentation. Young’s modulus of elasticity for the anterior cornea (group 1) was 245.9±209.1kPa (range: 82.3 - 530.8 kPa) for the untreated control eyes, and 467.8±373.2kPa (range: 157.4 – 1126 kPa) for the CXL treated eyes. Young’s modulus for the posterior cornea (group 2) was 100.2±61.9kPa (range: 28.1 - 162.6 kPa) for the untreated control eyes and 66.0±31.8kPa (range: 31.3 - 101.7 kPa) for the CXL treated eyes. Young’s modulus of the anterior stroma significantly increased after CXL treatment (p=0.024), whereas the posterior stroma did not demonstrate a significant difference in Young’s modulus after CXL treatment (p=0.170). The anterior stroma was stiffer than the posterior stroma for both the control and CXL treatment groups (p=0.077 and p=0.023, respectively). Our findings demonstrate that stiffness of the anterior corneal stroma after CXL treatment seems to increase significantly, while the posterior stroma does not seem to be affected by CXL.
Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation.One protein candidate for reducing stem cell–mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs). Studies using various MSC subpopulations and models have led to discrepant results.Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.