Amorphous silicon thin films deposited on copper foil have been observed to exhibit near theoretical capacity for a limited number of cycles. The films, however, eventually delaminate, leading to failure of the anode. In order to better understand the mechanism of capacity retention and the ultimate failure mode of a model brittle active:elastic/plastic inactive anode system, the films were subjected to in situ adhesion tests while observing the film surface using scanning electron microscopy. Atomic force and transmission electron microscopy, and electrochemical cycling were conducted to analyze the emerging morphology of the films during cycling. The adhesion of the as-deposited Si film to the Cu substrate was measured to ϳ7.7 J/m 2 , reflecting a weak interface adhesion strength. Plastic deformation of the underlying Cu substrate combined with a ratcheting mechanism is proposed to occur in the Si:Cu system, with delamination failure mode occurring only after the formation of an interface imperfection. From the analysis of slow rate cycling experiments, nucleation of a lithium compound based on the interdiffusion of Si and Cu is identified as the most probable cause of the ultimate delamination failure of the deposited film.
High carbon concentrations at distinct regions at thermally-grown SiO2/6H–SiC(0001) interfaces have been detected by electron energy loss spectroscopy (EELS). The thickness of these C-rich regions is estimated to be 10–15 Å. The oxides were grown on n-type 6H–SiC at 1100 °C in a wet O2 ambient for 4 h immediately after cleaning the substrates with the complete RCA process. In contrast, C-rich regions were not detected from EELS analyses of thermally grown SiO2/Si interfaces nor of chemical vapor deposition deposited SiO2/SiC interfaces. Silicon-rich layers within the SiC substrate adjacent to the thermally grown SiO2/SiC interface were also evident. The interface state density Dit in metal–oxide–SiC diodes (with thermally grown SiO2) was approximately 9×1011 cm−2 eV−1 at E−Ev=2.0 eV, which compares well with reported values for SiC metal–oxide–semiconductor (MOS) diodes that have not received a postoxidation anneal. The C-rich regions and the change in SiC stoichiometry may be associated with the higher than desirable Dit’s and the low channel mobilities in SiC-based MOS field effect transistors.
Selective two-electron oxygen reduction reaction (ORR) offers a promising route for hydrogen peroxide synthesis, and defective sp2-carbon-based materials are attractive, low-cost electrocatalysts for this process. However, due to a wide range of possible defect structures formed during material synthesis, the identification and fabrication of precise active sites remain a challenge. Here, we report a graphene edge-based electrocatalyst for two-electron ORRnanowire-templated three-dimensional fuzzy graphene (NT-3DFG). NT-3DFG exhibits notable efficiency [onset potential of 0.79 ± 0.01 V vs reversible hydrogen electrode (RHE)], high selectivity (94 ± 2% H2O2), and tunable ORR activity as a function of graphene edge site density. Using spectroscopic surface characterization and density functional theory calculations, we find that NT-3DFG edge sites are readily functionalized by carbonyl (CO) and hydroxyl (C–OH) groups under alkaline ORR conditions. Our calculations indicate that multiple functionalized configurations at both armchair and zigzag edges may achieve a local coordination environment that allows selective, two-electron ORR. We derive a generalized geometric descriptor based on the local coordination environment that provides activity predictions of graphene surface sites within ∼0.1 V of computed values. We combine synthesis, spectroscopy, and simulations to improve active site characterization and accelerate carbon-based electrocatalyst discovery.
Nanoscale platinum materials are essential components in many technologies, including catalytic converters and fuel cells. Combining Pt with other metals can enhance its performance and/or decrease the cost of the technology, and a wide range of strategies have been developed to capitalize on these advantages. However, wet chemical synthesis of Pt-containing nanoparticles (NPs) is challenging due to the diverse metal segregation and metal-metal redox processes possible under closely related experimental conditions. Here, we elucidate the relationship between Pt(IV) speciation and the formation of well-known NP motifs, including frame-like and core-shell morphologies, in Au-Pt systems. We leverage insights gained from these studies to induce a controlled transition from redox- to surface chemistry-mediated growth pathways, resulting in the formation of Pt NPs in epitaxial contact and linear alignment along a gold nanoprism substrate. Mechanistic investigations using a combination of electron microscopy and (195)Pt NMR spectroscopy identify Pt(IV) speciation as a crucial parameter for understanding and controlling the formation of Pt-containing NPs. Combined, these findings point toward fully bottom-up methods for deposition and organization of NPs on colloidal plasmonic substrates.
Graphene, a honeycomb sp hybridized carbon lattice, is a promising building block for hybrid-nanomaterials due to its electrical, mechanical, and optical properties. Graphene can be readily obtained through mechanical exfoliation, solution-based deposition of reduced graphene oxide (rGO), and chemical vapor deposition (CVD). The resulting graphene films' topology is two-dimensional (2D) surface. Recently, synthesis of three-dimensional (3D) graphitic networks supported or templated by nanoparticles, foams, and hydrogels was reported. However, the resulting graphene films lay flat on the surface, exposing 2D surface topology. Out-of-plane grown carbon nanostructures, such as vertically aligned graphene sheets (VAGS) and vertical carbon nanowalls (CNWs), are still tethered to 2D surface. 3D morphology of out-of-plane growth of graphene hybrid-nanomaterials which leverages graphene's outstanding surface-to-volume ratio has not been achieved to date. Here we demonstrate highly controlled synthesis of 3D out-of-plane single- to few-layer fuzzy graphene (3DFG) on a Si nanowire (SiNW) mesh template. By varying graphene growth conditions (CH partial pressure and process time), we control the size, density, and electrical properties of the NW templated 3DFG (NT-3DFG). 3DFG growth can be described by a diffusion-limited-aggregation (DLA) model. The porous NT-3DFG meshes exhibited high electrical conductivity of ca. 2350 S m. NT-3DFG demonstrated exceptional electrochemical functionality, with calculated specific electrochemical surface area as high as ca. 1017 m g for a ca. 7 μm thick mesh. This flexible synthesis will inspire formation of complex hybrid-nanomaterials with tailored optical and electrical properties to be used in future applications such as sensing, and energy conversion and storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.