C58 fullerenes were adsorbed onto room temperature Au(111) surface by low-energy (~6 eV) cluster ion beam deposition under ultrahigh vacuum conditions. The topographic and electronic properties of the deposits were monitored by means of scanning tunnelling microscopy (STM at 4.2 K). Topographic images reveal that at low coverages fullerene cages are pinned by point dislocation defects on the herringbone reconstructed gold terraces (as well as by step edges). At intermediate coverages, pinned monomers act as nucleation centres for the formation of oligomeric C58 chains and 2D islands. At the largest coverages studied, the surface becomes covered by 3D interlinked C58 cages. STM topographic images of pinned single adsorbates are essentially featureless. The corresponding local densities of states are consistent with strong cage-substrate interactions. Topographic images of [C58]n oligomers show a stripe-like intensity pattern oriented perpendicular to the axis connecting the cage centers. This striped pattern becomes even more pronounced in maps of the local density of states. As supported by density functional theory, DFT calculations, and also by analogous STM images previously obtained for C60 polymers [M. Nakaya, Y. Kuwahara, M. Aono, and T. Nakayama, J. Nanosci. Nanotechnol. 11, 2829 (2011)], we conclude that these striped orbital patterns are a fingerprint of covalent intercage bonds. For thick C58 films we have derived a bandgap of 1.2 eV from scanning tunnelling spectroscopy data confirming that the outermost C58 layer behaves as a wide band semiconductor.
Films comprising predominantly novel isomers of C(60) [=C(60)(nIPR)] have been generated by low energy ion beam deposition of vibronically excited C(60)(+) onto graphite followed by selective sublimation of C(60)(I(h)) from the deposited isomer mixture. The incident ions were generated by electron impact ionization/fragmentation of sublimed C(70). Images of the C(60)(nIPR) films obtained by applying atomic force microscopy show aggregates, which we attribute to covalently interlinked C(60)(nIPR) units. The covalent bonds are inferred from the significantly higher thermal stability of the C(60)(nIPR) films compared to the C(60)(I(h)) van der Waals solid-as measured by thermal desorption with mass spectrometric detection of the C(60) mass channel (the only desorbable species). In contrast to the characteristic doublet structure of the occupied valence band in the ultraviolet photoelectron spectrum of pure C(60)(I(h)), the valence band of C(60)(nIPR) films exhibits a triplet feature with the additional peak occurring at a binding energy of approximately 2.6 eV. This is an indicator of the electronic modifications induced by intermolecular bonding. C(60)(nIPR) films exhibit a narrower band gap than found for C(60)(I(h)). They also have significantly different chemical reactivity toward incorporation of thermal energy deuterium atoms. In order to model the experimental photoelectron spectra, various covalently linked oligomers of (#1809)C(60)(C(2v)), the second most stable conventional 60-atom fullerene cage, were calculated by means of the density functional theory. These spectral predictions together with analogous previous observations on related fullerene solids such as C(58) lead us to infer that C(60)(nIPR) films consist of fullerene cage isomers containing one or more adjacent pentagon pairs, which mediate covalent cage-cage interconnection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.