The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host–microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.
Atmospheric carbon dioxide (CO 2 ) emissions from human industrial activities are causing a progressive alteration of seawater chemistry, termed ocean acidification, that has decreased seawater pH and carbonate ion concentration markedly since the Industrial Revolution. Many marine organisms, like molluscs and corals, build hard shells and skeletons using carbonate ions, and they exhibit negative overall responses to ocean acidification. This adds to other chronic and acute environmental pressures and promotes shifts away from calcifierrich communities.In this study, we examine the possible implications of ocean acidification on mollusc harvests worldwide by examining present production, consumption, and export and by relating those data to present and future surface ocean chemistry forecast by a coupled-climate ocean model (Community Climate System 3.1; CCSM3). We identify the "transition decade" when future ocean chemistry will distinctly differ from that of today (2010), and when mollusc harvest levels similar to those of the present cannot be guaranteed if present ocean chemistry is a significant determinant of today's mollusc production. We assess nations' vulnerability to ocean acidification-driven decreases in mollusc harvests by comparing nutritional and economic dependences on mollusc harvests, overall societal adaptability, and the amount of time until the transition decade. Projected transition decades for individual countries will occur 10-50 years after 2010. Countries with low adaptability, high nutritional or economic dependence on molluscs, rapidly approaching transition decades, or rapidly growing populations will therefore be most vulnerable to ocean acidification-driven mollusc harvest decreases. These transition 3 SubmittedtoFishandFisheries,August17,2010; RevisedversionsubmittedMay20,2011decades suggest how soon nations should implement strategies, such as increased aquaculture of resilient species, to help maintain current per capita mollusc harvests.
Coastal upwelling regimes are some of the most productive ecosystems in the ocean but are also among the most vulnerable to ocean acidification (OA) due to naturally high background concentrations of CO2. Yet our ability to predict how these ecosystems will respond to additional CO2 resulting from anthropogenic emissions is poor. To help address this uncertainty, researchers perform manipulative experiments where biological responses are evaluated across different CO2 partial pressure (pCO2) levels. In upwelling systems, however, contemporary carbonate chemistry variability remains only partly characterized and patterns of co-variation with other biologically important variables such as temperature and oxygen are just beginning to be explored in the context of OA experimental design. If co-variation among variables is prevalent, researchers risk performing OA experiments with control conditions that are not experienced by the focal species, potentially diminishing the ecological relevance of the experiment. Here, we synthesized a large carbonate chemistry dataset that consists of carbonate chemistry, temperature, and oxygen measurements from multiple moorings and ship-based sampling campaigns from the California Current Ecosystem (CCE), and includes fjord and tidal estuaries and open coastal waters. We evaluated patterns of pCO2 variability and highlight important co-variation between pCO2, temperature, and oxygen. We subsequently compared environmental pCO2–temperature measurements with conditions maintained in OA experiments that used organisms from the CCE. By drawing such comparisons, researchers can gain insight into the ecological relevance of previously published OA experiments, but also identify species or life history stages that may already be influenced by contemporary carbonate chemistry conditions. We illustrate the implications co-variation among environmental variables can have for the interpretation of OA experimental results and suggest an approach for designing experiments with pCO2 levels that better reflect OA hypotheses while simultaneously recognizing natural co-variation with other biologically relevant variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.