Due to a greater social and environmental awareness of citizens, advantageous regulations and a favourable economic return on investment, the presence of photovoltaic (PV) installations in distribution grids is increasing. In the future, not only a significant increase in photovoltaic generation is expected, but also in other of the so-called distributed energy resources (DER), such as wind generation, storage, electric vehicle charging points or manageable demands. Despite the benefits posed by these technologies, an uncontrolled spread could create important challenges for the power system, such as increase of energy losses or voltages out-of-limits along the grid, for example. These issues are expected to be more pronounced in low voltage (LV) distribution networks. This article has two main objectives: proposing a method to calculate the LV distributed photovoltaic generation hosting capacity (HC) that minimizes system losses and evaluating different management techniques for solar PV inverters and their effect on the hosting capacity. The HC calculation is based on a mixture of deterministic methods using time series data and statistical ones: using real smart meters data from customers and generating different combinations of solar PV facilities placements and power to evaluate its effect on the grid operation.
The complexity in the power system topology, together with the new paradigm in generation and demand, make achieving an adequate level of supply quality a complicated goal for distribution companies. The electrical system power quality is subject to different regulations. On one hand, EN-50160 establishes the characteristics of the voltage supplied by public electricity networks, therefore affecting distribution companies. On the other hand, the EN-61000 series of standards regulates the electromagnetic compatibility of devices connected to the network, therefore affecting the loads. Power companies and device manufacturers are both responsible and affected in the issue of quality of supply. Despite the regulations, there are certain aspects of the supply quality that are not solved. One of the most important is the location of the disturbance’s origin. This paper presents a review of the main techniques to locate the disturbance’s origin in the electric network through two approaches: identification of the disturbance’s cause and the location of the origin.
In low-voltage grids with a wide spread of domestic and/or small commercial consumers, mostly single-phase, problems can appear due to unbalanced power consumption between the different phases. These problems are mainly caused due to voltage unbalances between phases and the increase in distribution losses. This phenomenon occurs more frequently at the end of highly radial grids and can be stressed by the installation of renewable generators next to the consumers. Amongst the various techniques that have been proposed to solve this problem, this article explores the use of a D-STATCOM, presenting and testing a new method for the optimal location of this type of D-FACT. The developed method starts from a detailed analysis of the existing voltage unbalances in a distribution network and identifies the optimal location of the D-STATCOM (i.e., the one that reduces these unbalances while reducing energy losses). The developed method has been successfully tested for one year at four real European locations with different characteristics and different kinds of users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.