Given the high prevalence of stress-related mental disorders, their impact on person, family, and society and the paucity of treatment options for most of these disorders, there is currently a pressing need for innovative approaches to deal with these issues and enhance well-being. One approach which has received increasing attention over the last decade is to shift our scientific and clinical focus from risk factors for psychopathology to factors promoting resilience and mental well-being. In order to summarize and evaluate the current state of scientific affairs on the biological basis of resilience, we provide an overview of the literature on animal and human studies of resilience. Because resilience can only truly be operationalized through longitudinal data collection and analyses, we focus primarily on longitudinal studies. This review shows that the concept of resilience is currently being operationalized, measured and even defined in widely variable manners, both within animal and human studies. We further provide an overview of existing and new strategies that could help promote resilience and which are proposed to be implemented more often in clinical situations. Finally, we summarize the challenges the field is facing and provide recommendations for future research.
The formation of long-term memories requires changes in the transcriptional program andde novoprotein synthesis. One of the critical regulators for long-term memory (LTM) formation and maintenance is the transcription factor CREB. Genetic studies have dissected the requirement of CREB activity within memory circuits, however less is known about the genetic mechanisms acting downstream of CREB and how they may contribute defining LTM phases. To better understand the downstream mechanisms, we here used a targeted DamID approach (TaDa). We generated a CREB-Dam fusion protein using the fruit flyDrosophila melanogasteras model. Expressing CREB-Dam in the mushroom bodies (MBs), a brain center implicated in olfactory memory formation, we identified genes that are differentially expressed between paired and unpaired appetitive training paradigm. Of those genes we selected candidates for an RNAi screen in which we identified genes causing increased or decreased LTM.
The formation of long-term memories requires changes in the transcriptional program and de novo protein synthesis. One of the critical regulators for long-term memory (LTM) formation and maintenance is the transcription factor CREB. Genetic studies have dissected the requirement of CREB activity within memory circuits, however less is known about the genetic mechanisms acting downstream of CREB and how they may contribute defining LTM phases. To better understand the downstream mechanisms, we here used a targeted DamID approach (TaDa). We generated a CREB-Dam fusion protein using the fruit fly Drosophila melanogaster as model. Expressing CREB-Dam in the mushroom bodies (MBs), a brain center implicated in olfactory memory formation, we identified genes that are differentially expressed between paired and unpaired appetitive training paradigm. Of those genes we selected candidates for an RNAi screen in which we identified genes causing increased or decreased LTM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.