Zinc oxide (ZnO) supplied at pharmacological dosage in diets of weaned piglets improves growth performance. However, it causes environmental contamination and induces bacterial antibiotic resistance, yet this practice is debated. The effects on gut microbiota and integrity in weaned piglets of conventional ZnO at nutritional and pharmacological dosage (110 and 2,400 mg/kg Zn, respectively) were compared to an alternative ZnO source at 110 and 220 mg/kg Zn. Each of the four treatments was applied to four pens (two piglets/pen; weaning age, 20 days) for 15 days, and piglets were sampled on day 15 to determine indices of gut integrity. Feeding conventional ZnO at 2,400 mg/kg Zn reduced coliforms and Escherichia coli in distal small intestine as compared to conventional ZnO at 110 mg/kg (−1.7 and −1.4 log10 cfu/g, respectively), whereas the alternative ZnO reduced only coliforms, irrespective of dosage (−1.6 to −1.7 log10 cfu/g). Transepithelial electrical resistance of distal small intestinal mucosa was higher for pigs fed the alternative ZnO source as compared with groups fed 110 mg/kg Zn of conventional ZnO, in line with a trend for higher gene expression of claudin‐1 and zona occludens‐1. Interestingly, the alternative ZnO source at 110 and 220 mg/kg Zn increased intestinal alkaline phosphatase gene transcript as compared to conventional ZnO at 110 mg/kg Zn, whereas the alternative ZnO source at 110 mg/kg Zn exhibited higher Zn concentrations in mucosa (2,520 μg/g) as compared to conventional ZnO at 110 mg/kg Zn (1,211 μg/g). However, assessing alkaline phosphatase activity, no significant effects were found. In conclusion, the alternative ZnO reduced digesta Enterobacteriaceae numbers and improved gut integrity, albeit similar or better, depending on the dosage, to the effects of pharmacological dosage of conventional ZnO.
BackgroundDeoxynivalenol (DON) is a mycotoxin produced by Fusarium species in the field, commonly found in cereal grains, which negatively affects performances and health of animals. Mycotoxin binders are supposed to reduce the toxicity of mycotoxins.MethodThe effect of a mycotoxin binder (containing acid-activated bentonite, clinoptilolite, yeast cell walls and organic acids) on growth performance and gut health was studied. Hundred and twenty weaning piglets were allocated to 4 treatments, with 5 pens of 6 piglets each, arranged in a 2 × 2 factorial design: control diet; control diet with 1 kg/t binder; control diet with DON; and control diet with DON and 1 kg/t binder. From d0–14, the diet of DON-challenged groups was artificially contaminated with a mixture of DON (2.6 mg/kg), 3-acetyl-deoxynivalenol (0.1 mg/kg) and 15-acetyl-deoxynivalenol (0.3 mg/kg), after which the total contamination level was reduced to 1 mg/kg, until d37. On d14, one pig from each pen was euthanized and distal small intestinal mucosa samples were collected for the assessment of intestinal permeability, and gene expression of tight junction proteins, toll-like receptor 4, inflammatory cytokines and intestinal alkaline phosphatase.ResultsAfter 37 d, there were no differences in growth performance between control and DON-challenged groups (P > 0.05). Nevertheless, groups that received diets with binder had a significantly higher average daily gain (ADG) and average daily feed intake (ADFI) for the first 14 d as well as for the whole period, compared to groups without binder (P ≤ 0.05). Groups with binder in the diet also exhibited lower expression of toll-like receptor 4 in distal small intestinal mucosa at d14, compared to groups without binder (P ≤ 0.05). Interestingly, comparing the two DON treatments, piglets fed DON and binder had significantly higher ADFI and ADG compared to those with only DON for the first 14-d (P ≤ 0.05). Addition of binder to DON contaminated diets, also down-regulated the gene expression of toll-like receptor 4 (P ≤ 0.05) and increased mRNA level zona occludens 1 (P ≤ 0.10) as compared to DON.ConclusionsThe present data provide evidence that the binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression. However, the current study does not allow to assess whether the effects of the binder are mediated by alterations in the toxicokinetics of the mycotoxin.
The monoterpene thymol has been proposed as a valuable alternative to in-feed antibiotics in animal production. However, the effectiveness of the antimicrobial is comprised by its fast absorption in the upper gastrointestinal tract. In this work, two glucoconjugates, thymol α-D-glucopyranoside (TαG) and thymol β-D-glucopyranoside (TβG), were compared with free thymol for their potential to deliver higher concentrations of the active compound to the distal small intestine of supplemented piglets. Additionally, an analytical method was developed and validated for the simultaneous quantification of thymol and its glucoconjugates in different matrices. In stomach contents of pigs fed with 3333 μmol kg −1 thymol, TαG, or TβG, total thymol concentrations amounted to 3048, 2357, and 1820 μmol kg −1 dry matter, respectively. In glucoconjugate-fed pigs, over 30% of this concentration was present in the unconjugated form, suggesting partial hydrolysis in the stomach. No quantifiable levels of thymol or glucoconjugates were detected in the small intestine or cecum for any treatment, indicating that conjugation with one glucose unit did not sufficiently protect thymol from early absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.