We describe a novel method to develop energetically optimized, structure-based pharmacophores for use in rapid in silico screening. The method combines pharmacophore perception and database screening with protein-ligand energetic terms computed by the Glide XP scoring function to rank the importance of pharmacophore features. We derive energy-optimized pharmacophore hypotheses for 30 pharmaceutically relevant crystal structures and screen a database to assess the enrichment of active compounds. The method is compared to three other approaches: (1) pharmacophore hypotheses derived from a systematic assessment of receptor-ligand contacts, (2) Glide SP docking, and (3) 2D ligand fingerprint similarity. The method developed here shows better enrichments than the other three methods and yields a greater diversity of actives than the contact-based pharmacophores or the 2D ligand similarity. Docking produces the most cases (28/30) with enrichments greater than 10.0 in the top 1% of the database and on average produces the greatest diversity of active molecules. The combination of energy terms from a structure-based analysis with the speed of a ligand-based pharmacophore search results in a method that leverages the strengths of both approaches to produce high enrichments with a good diversity of active molecules.
We have developed a method that uses energetic analysis of structure-based fragment docking to elucidate key features for molecular recognition. This hybrid ligand- and structure-based methodology uses an atomic breakdown of the energy terms from the Glide XP scoring function to locate key pharmacophoric features from the docked fragments. First, we show that Glide accurately docks fragments, producing a root mean squared deviation (RMSD) of <1.0 A for the top scoring pose to the native crystal structure. We then describe fragment-specific docking settings developed to generate poses that explore every pocket of a binding site while maintaining the docking accuracy of the top scoring pose. Next, we describe how the energy terms from the Glide XP scoring function are mapped onto pharmacophore sites from the docked fragments in order to rank their importance for binding. Using this energetic analysis we show that the most energetically favorable pharmacophore sites are consistent with features from known tight binding compounds. Finally, we describe a method to use the energetically selected sites from fragment docking to develop a pharmacophore hypothesis that can be used in virtual database screening to retrieve diverse compounds. We find that this method produces viable hypotheses that are consistent with known active compounds. In addition to retrieving diverse compounds that are not biased by the co-crystallized ligand, the method is able to recover known active compounds from a database screen, with an average enrichment of 8.1 in the top 1% of the database.
The prevention of blood coagulation is important in treating thromboembolic disorders, and several serine proteases involved in the coagulation cascade have been classified as pharmaceutically relevant. Whereas structure-based drug design has contributed to the development of some serine protease inhibitors, traditional computational methods have not been able to fully describe structure-activity relationships (SAR). Here, we study the SAR for a number of serine proteases by using a method that calculates the thermodynamic properties (enthalpy and entropy) of the water that solvates the active site. We show that the displacement of water from specific subpockets (such as S1-4 and the ester binding pocket) of the active site by the ligand can govern potency, especially for cases in which small chemical changes (i.e., a methyl group or halogen) result in a substantial increase in potency. Furthermore, we describe how relative binding free energies can be estimated by combining the water displacement energy with complementary terms from an implicit solvent molecular mechanics description binding.
We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-β-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.