We describe a novel method to develop energetically optimized, structure-based pharmacophores for use in rapid in silico screening. The method combines pharmacophore perception and database screening with protein-ligand energetic terms computed by the Glide XP scoring function to rank the importance of pharmacophore features. We derive energy-optimized pharmacophore hypotheses for 30 pharmaceutically relevant crystal structures and screen a database to assess the enrichment of active compounds. The method is compared to three other approaches: (1) pharmacophore hypotheses derived from a systematic assessment of receptor-ligand contacts, (2) Glide SP docking, and (3) 2D ligand fingerprint similarity. The method developed here shows better enrichments than the other three methods and yields a greater diversity of actives than the contact-based pharmacophores or the 2D ligand similarity. Docking produces the most cases (28/30) with enrichments greater than 10.0 in the top 1% of the database and on average produces the greatest diversity of active molecules. The combination of energy terms from a structure-based analysis with the speed of a ligand-based pharmacophore search results in a method that leverages the strengths of both approaches to produce high enrichments with a good diversity of active molecules.
Indoleamine 2,3-dioxygenase (IDO) catalyzes the first and rate-limiting step of Kynurenine pathway along the major route of Tryptophan catabolism. The scientific interest in the enzyme has been growing since the observations of the involvement of IDO in the mechanisms of immune tolerance and in the mechanisms of tumor immuno-editing process. In view of this latter observation, in particular, preclinical studies of small molecule inhibitors of the enzyme have indicated the feasibility to thwart the immuno-editing process and to enhance the efficacy of current chemotherapeutic agents, supporting the notion that IDO is a novel target in cancer disease.This review covers the structural and conformational aspects of substrate recognition by IDO, including the catalytic mechanism and the so-far puzzling mechanisms of enzyme activation. Furthermore, we discuss the recent advances of medicinal chemistry in the field of IDO inhibitors.
The aryl hydrocarbon receptor (AhR) is a nuclear receptor regulating a wide range of biological and toxicological effects. Metabolites of L-tryptophan are able to bind and activate AhR, providing a link between tryptophan catabolism and a novel mechanism of protective tolerance, referred to as "disease tolerance". The notion that pharmacologic modulation of genes associated with endotoxin tolerance would be beneficial in clinical settings dominated by acute hyperinflammatory responses to infection thrusts AhR into the limelight as an interesting druggable target. Combining homology modeling, docking studies, and molecular dynamic simulations with mutagenesis experiments and gene profiling, in this work we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and two different L-tryptophan metabolites, namely L-Kynurenine and FICZ (6-formylindolo[3,2-b]carbazole), are able to bind to mAhR, exploiting different key interactions with distinct set of fingerprint residues. As a result, they stabilize different conformations of mAhR that, in turn, selectively regulate downstream signaling and transcription of specific target genes. Collectively, these results open new avenues for the design and development of selective AhR modulators that, by targeting specific receptor conformations associated with specific AhR functions, may offer novel therapeutic opportunities in infectious diseases and other morbidity that may be associated with the receptor.
Activation of TGR5 showed to protect mice from diabesity and insulin resistance, to improve liver functions, as well as to attenuate the development of atherosclerosis. However, although the efficacy of TGR5 agonists in mice is encouraging, further studies are needed to determine their potential in humans and to evaluate carefully the balance between the therapeutic benefits and adverse effects associated with the target. The development of new TGR5 selective ligands to support studies in animal models will surely facilitate the understanding of the complexity of TGR5 signaling network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.