Human immunodeficiency virus (HIV) incidence is an important measure for monitoring the epidemic and evaluating the efficacy of intervention and prevention trials. This study developed a high-throughput, single-measure incidence assay by implementing a pyrosequencing platform. We devised a signal-masking bioinformatics pipeline, which yielded a process error rate of 5.8 ؋ 10 ؊4 per base. The pipeline was then applied to analyze 18,434 envelope gene segments (HXB2 7212 to 7601) obtained from 12 incident and 24 chronic patients who had documented HIV-negative and/or -positive tests. The pyrosequencing data were cross-checked by using the single-genome-amplification (SGA) method to independently obtain 302 sequences from 13 patients. Using two genomic biomarkers that probe for the presence of similar sequences, the pyrosequencing platform correctly classified all 12 incident subjects (100% sensitivity) and 23 of 24 chronic subjects (96% specificity). One misclassified subject's chronic infection was correctly classified by conducting the same analysis with SGA data. The biomarkers were statistically associated across the two platforms, suggesting the assay's reproducibility and robustness. Sampling simulations showed that the biomarkers were tolerant of sequencing errors and template resampling, two factors most likely to affect the accuracy of pyrosequencing results. We observed comparable biomarker scores between AIDS and non-AIDS chronic patients (multivariate analysis of variance [MANOVA], P ؍ 0.12), indicating that the stage of HIV disease itself does not affect the classification scheme. The highthroughput genomic HIV incidence marks a significant step toward determining incidence from a single measure in cross-sectional surveys. IMPORTANCEAnnual HIV incidence, the number of newly infected individuals within a year, is the key measure of monitoring the epidemic's rise and decline. Developing reliable assays differentiating recent from chronic infections has been a long-standing quest in the HIV community. Over the past 15 years, these assays have traditionally measured various HIV-specific antibodies, but recent technological advancements have expanded the diversity of proposed accurate, user-friendly, and financially viable tools. Here we designed a high-throughput genomic HIV incidence assay based on the signature imprinted in the HIV gene sequence population. By combining next-generation sequencing techniques with bioinformatics analysis, we demonstrated that genomic fingerprints are capable of distinguishing recently infected patients from chronically infected patients with high precision. Our high-throughput platform is expected to allow us to process many patients' samples from a single experiment, permitting the assay to be cost-effective for routine surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.