Pregestational type 1 (T1DM) and type 2 (T2DM) diabetes mellitus and gestational diabetes mellitus (GDM) are associated with increased rates of adverse maternal and neonatal outcomes. Adverse outcomes are more common in women with pregestational diabetes compared to GDM; although, conflicting results have been reported. This systematic review aims to summarise and synthesise studies that have compared adverse pregnancy outcomes in pregnancies complicated by pregestational diabetes and GDM. Three databases, Pubmed, EBSCOhost and Scopus were searched to identify studies that compared adverse outcomes in pregnancies complicated by pregestational T1DM and T2DM, and GDM. A total of 20 studies met the inclusion criteria and are included in this systematic review. Thirteen pregnancy outcomes including caesarean section, preterm birth, congenital anomalies, pre-eclampsia, neonatal hypoglycaemia, macrosomia, neonatal intensive care unit admission, stillbirth, Apgar score, large for gestational age, induction of labour, respiratory distress syndrome and miscarriages were compared. Findings from this review confirm that pregestational diabetes is associated with more frequent pregnancy complications than GDM. Taken together, this review highlights the risks posed by all types of maternal diabetes and the need to improve care and educate women on the importance of maintaining optimal glycaemic control to mitigate these risks.
Adiponectin is an adipocyte-derived hormone that plays a critical role in energy homeostasis, mainly attributed to its insulin-sensitizing properties. Accumulating studies have reported that adiponectin concentrations are decreased during metabolic diseases, such as obesity and type 2 diabetes, with an emerging body of evidence providing support for its use as a biomarker for pregnancy complications. The identification of maternal factors that could predict the outcome of compromised pregnancies could act as valuable tools that allow the early recognition of high-risk pregnancies, facilitating close follow-up and prevention of pregnancy complications in mother and child. In this review we consider the role of adiponectin as a potential biomarker of disorders associated with pregnancy. We discuss common disorders associated with pregnancy (gestational diabetes mellitus, preeclampsia, preterm birth and abnormal intrauterine growth) and highlight studies that have investigated the potential of adiponectin to serve as biomarkers for these disorders. We conclude the review by recommending strategies to consider for future research.
Maternal diabetes is associated with pregnancy complications and poses a serious health risk to both mother and child. Growing evidence suggests that pregnancy complications are more frequent and severe in pregnant women with pregestational type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) compared to women with gestational diabetes mellitus (GDM). Elucidating the pathophysiological mechanisms that underlie the different types of maternal diabetes may lead to targeted strategies to prevent or reduce pregnancy complications. In recent years, microRNAs (miRNAs), one of the most common epigenetic mechanisms, have emerged as key players in the pathophysiology of pregnancy-related disorders including diabetes. This review aims to provide an update on the status of miRNA profiling in pregnancies complicated by maternal diabetes. Four databases, Pubmed, Web of Science, EBSCOhost, and Scopus were searched to identify studies that profiled miRNAs during maternal diabetes. A total of 1800 articles were identified, of which 53 are included in this review. All studies profiled miRNAs during GDM, with no studies on miRNA profiling during pregestational T1DM and T2DM identified. Studies on GDM were mainly focused on the potential of miRNAs to serve as predictive or diagnostic biomarkers. This review highlights the lack of miRNA profiling in pregnancies complicated by T1DM and T2DM and identifies the need for miRNA profiling in all types of maternal diabetes. Such studies could contribute to our understanding of the mechanisms that link maternal diabetes type with pregnancy complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.