Key Points• NPM1 RT-PCR levels .1%are associated with poor overall and disease-free survival in AML patients treated with chemotherapy.• NPM1 MRD levels .10% are associated with poor overall and disease-free survival in AML patients after allogeneic transplantation.Mutations of the NPM1 gene (NPM1 mut ) are among the most common genetic alterations in acute myeloid leukemia and are suitable for minimal residual disease detection. We retrospectively investigated the prognostic impact of NPM1 mut -based minimal residual disease detection from bone marrow for development of relapse by using a newly developed real-time polymerase chain reaction based on locked nucleic acid-containing primers in 174 patients, 155 of whom were treated within prospective protocols. The prognostic value of 5 cutoff values after completion of treatment or after allogeneic transplantation was studied by using cause-specific hazard models. Subsequent validation using cross-validated partial likelihood analysis revealed that an increase of more than 1% NPM1 mut /ABL1 was most prognostic for relapse after chemotherapy, whereas an increase of more than 10% NPM1 mut /ABL1 was most prognostic for relapse after allogeneic transplantation. Univariate and multivariate analysis of disease-free survival and overall survival revealed a significantly worse outcome in patients with >1% NPM1 mut /ABL1 and >10% NPM1 mut /ABL1, respectively, which remained significant after adjustment for FLT3-internal tandem duplication status. Our results in a large data set define and optimize cutoff values for early diagnosis of molecular relapse. These results may be especially important for defining triggers for early therapeutic intervention. (Blood. 2013;122(1):83-92)
Sequence polymorphisms (SPs) can serve as genetic markers for quantitative polymerase chain reactions (qPCR) for chimerism analysis, providing a significantly higher sensitivity compared to short tandem repeat PCR. In this study, a panel of 29 selected markers was evaluated in 317 patients with leukemia and myelodysplastic syndrome, who received allogeneic stem cell transplantation. In total, 5415 posttransplantation samples were analyzed. Recipient genotype discrimination was possible in 96% with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Marker specific standard dilution series from volunteers' DNA served as standard for quantification of chimerism. Sensitivity of the method was < or =1 x 10-3 (0.1% of recipient cells) in 83.3% of the assays. By this method, it was possible to very accurately detect autologous signals in the range from 0% to 0.5% (95% confidence interval [CI] +/-0.2), from 0.5% to 1% (95% CI +/-0.4), from 1% to 2% (95% CI +/-0.6) and from 2% to 5% (95% CI +/-1.2). Reproducibility of the quantified autologous signals was independent from the amount of DNA. This is the first report on a SP-based chimerism system allowing for the performance of chimerism analyses for virtually all patients with high sensitivity, excellent reproducibility, and precision of measurement.
Quantitative real-time PCR (qPCR) has been proposed as a highly sensitive method for monitoring hematopoietic chimerism and may serve as a surrogate marker for the detection of minimal residual disease minimal residual disease in myelodysplastic syndrome (MDS), until specific methods of detection become available. Because a systematic comparison of the clinical utility of qPCR with the gold standard short tandem repeat (STR)-PCR has not been reported, we retrospectively measured chimerism by qPCR in 54 children transplanted for MDS in a previous study. Results obtained by STR-PCR in the initial study served as comparison. Because the detection limit of qPCR was sufficiently low to detect an autologous background, we defined the sample as mixed chimera if the proportion of recipient-derived cells exceeded .5%. The true positive rates were 100% versus 80% (qPCR versus STR-PCR, not significant), and mixed chimerism in most cases was detected earlier by qPCR than by STR-PCR (median, 31 days) when chimerism was quantified concurrently in peripheral blood and bone marrow. Both methods revealed a substantial rate of false positives (22.7% versus 13.6%, not significant), indicating the importance of serial testing of chimerism to monitor its progression. Finally, we propose criteria for monitoring chimerism in pediatric MDS with regard to the subtypes, specimens, PCR method, and timing of sampling.
Hematopoietic stem and progenitor cells (HSPCs) generate all cell types of the blood and are crucial for homeostasis of all blood lineages in vertebrates. Hematopoietic stem cell transplantation (HSCT) is a rapidly evolving technique that offers potential cure for hematologic cancers, such as leukemia or lymphoma. HSCT may be autologous or allogenic. Successful HSCT depends critically on the abundance of engraftment-competent HSPCs, which are currently difficult to obtain in large numbers. Therefore, finding compounds that enhance either the number or the activity of HSPCs could improve prognosis for patients undergoing HSCT and is of great clinical interest. We developed a semiautomated screening method for whole zebrafish larvae using conventional liquid handling equipment and confocal microscopy. Applying this pipeline, we screened 550 compounds in triplicate for proliferation of HSPCs in vivo and identified several modulators of hematopoietic stem cell activity. One identified hit was valproic acid (VPA), which was further validated as a compound that expands and maintains the population of HSPCs isolated from human peripheral blood ex vivo. In summary, our in vivo zebrafish imaging screen identified several potential drug candidates with clinical relevance and could easily be further expanded to screen more compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.