The quantum cohomology ring of the Grassmannian is determined by the quantum Pieri rule for multiplying by Schubert classes indexed by row or column-shaped partitions. We provide a direct equivariant generalization of Postnikov's quantum Pieri rule for the Grassmannian in terms of cylindric shapes. The equivariant terms in this Graham-positive rule simply encode the positions of all possible addable boxes within one cylindric skew diagram. As such, unlike the earlier equivariant quantum Pieri rule of Huang and Li and known equivariant quantum Littlewood-Richardson rules, our formula does not require any calculations in a different Grassmannian or two-step flag variety.
The quantum cohomology ring of the Grassmannian is determined by the quantum Pieri rule for multiplying by Schubert classes indexed by row or column-shaped partitions. We provide a direct equivariant generalization of Postnikov's quantum Pieri rule for the Grassmannian in terms of cylindric shapes, complementing related work of Gorbounov and Korff in quantum integrable systems. The equivariant terms in our Graham-positive rule simply encode the positions of all possible addable boxes within one cylindric skew diagram. As such, unlike the earlier equivariant quantum Pieri rule of Huang and Li and known equivariant quantum Littlewood-Richardson rules, our formula does not require any calculations in a different Grassmannian or two-step flag variety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.