Predicting ship resistance in shallow water conditions is very important for the operational considerations of a ship. Shallow waters greatly affect viscous resistance, wave resistance and also propulsion efficiency. This study aims to determine the effect of water depth on the resistance of the ferry. The CFD method was used to simulate this phenomenon and its effects on the hull starting from the coefficient of ship resistance, surge force, sway force and yaw (hydrodynamic moment). Input speed at 9 – 13 knots with depth ratio H/T = 4 (deep water), H/T = 3 (deep water), H/T = 2 (medium water), H/T = 1.3 (shallow water), and H/T = 1 (very shallow water). The simulation results show a significant increase in total resistance, surge force, sway force, and hydrodynamic moment in shallow water conditions in every speed variation. This condition is caused by the increase in pressure received by the ship's hull when operating in shallow water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.