BackgroundAccurate information on the distribution of the tsetse fly is of paramount importance to better control animal trypanosomosis. Entomological and parasitological surveys were conducted in the tsetse belt of south-western Ethiopia to describe the prevalence of trypanosomosis (PoT), the abundance of tsetse flies (AT) and to evaluate the association with potential risk factors.MethodsThe study was conducted between 2009 and 2012. The parasitological survey data were analysed by a random effects logistic regression model, whereas the entomological survey data were analysed by a Poisson regression model. The percentage of animals with trypanosomosis was regressed on the tsetse fly count using a random effects logistic regression model.ResultsThe following six risk factors were evaluated for PoT (i) altitude: significant and inverse correlation with trypanosomosis, (ii) annual variation of PoT: no significant difference between years, (iii) regional state: compared to Benishangul-Gumuz (18.0 %), the three remaining regional states showed significantly lower PoT, (iv) river system: the PoT differed significantly between the river systems, (iv) sex: male animals (11.0 %) were more affected than females (9.0 %), and finally (vi) age at sampling: no difference between the considered classes. Observed trypanosome species were T. congolense (76.0 %), T. vivax (18.1 %), T. b. brucei (3.6 %), and mixed T. congolense/vivax (2.4 %).The first four risk factors listed above were also evaluated for AT, and all have a significant effect on AT. In the multivariable model only altitude was retained with AT decreasing with increasing altitude. Four different Glossina species were identified i.e. G. tachinoides (52.0 %), G. pallidipes (26.0 %), G.morsitans submorsitans (15.0 %) and G. fuscipes fuscipes (7.0 %). Significant differences in catches/trap/day between districts were observed for each species. No association could be found between the tsetse fly counts and trypanosomosis prevalence.ConclusionsTrypanosomosis remains a constraint to livestock production in south-western Ethiopia. Four Glossina and three Trypanosoma species were observed. Altitude had a significant impact on AT and PoT. PoT is not associated with AT, which could be explained by the importance of mechanical transmission. This needs to be investigated further as it might jeopardize control strategies that target the tsetse fly population.
Culicoides imicola is a midge species serving as vector for a number of viral diseases of livestock, including Bluetongue, and African Horse Sickness. C. imicola is also known to transmit Schmallenberg virus experimentally. Environmental and demographic factors may impose rapid changes on the global distribution of C. imicola and aid introduction into new areas. The aim of this study is to predict the global distribution of C. imicola using an ensemble modeling approach by combining climatic, livestock distribution and land cover covariates, together with a comprehensive global dataset of geo-positioned occurrence points for C. imicola. Thirty individual models were generated by ‘biomod2’, with 21 models scoring a true skill statistic (TSS) >0.8. These 21 models incorporated weighted runs from eight of ten algorithms and were used to create a final ensemble model. The ensemble model performed very well (TSS = 0.898 and ROC = 0.991) and indicated high environmental suitability for C. imicola in the tropics and subtropics. The habitat suitability for C. imicola spans from South Africa to southern Europe and from southern USA to southern China. The distribution of C. imicola is mainly constrained by climatic factors. In the ensemble model, mean annual minimum temperature had the highest overall contribution (42.9%), followed by mean annual maximum temperature (21.1%), solar radiation (13.6%), annual precipitation (11%), livestock distribution (6.2%), vapor pressure (3.4%), wind speed (0.8%), and land cover (0.1%). The present study provides the most up-to-date predictive maps of the potential distributions of C. imicola and should be of great value for decision making at global and regional scales.
A cross-sectional study was conducted to determine the prevalence and risk factors of Cryptosporidium infection and identify species of the parasite in cattle in central Ethiopia. Faecal samples, collected from 392 dairy cattle managed under intensive and extensive production system, were analyzed by the Modified Ziehl-Neelsen (MZN) microscopy, Nested PCR, PCR-RFLP and sequence analyses of the SSU rRNA gene of Cryptosporidium. The overall prevalence, the prevalence in the extensive and intensive farms was 18.6%, 11% and 21%, respectively. The infection was detected in 37.7% of the investigated farms with prevalence range of 7.4% -100%, and all of the six surveyed districts with significant (P = 0.000) prevalence difference. Restriction digestion and sequence analysis showed Cryptosporidium parvum and C. andersoni in 27% and 73% of the infections, respectively, showing an age related distribution pattern, C. parvum exclusively occurring in calves <2 months old and C. andersoni only in heifers and adult cattle. The infection was significantly associated with management system, farm location, herd size, source of drinking water, weaning age, presence of bedding, pen cleanness and cleanness of hindquarter. In conclusion, Cryptosporidium infection due to C. parvum and C. andersoni was prevalent in cattle in the study area. Cryptosporidium parvum has the concern of public health importance, especially to farm workers and people in close contact with cattle. Instigation of imperative control measure is suggested to lessen the risk of human infection and loss of production in dairy farms.
Culicoides imicola is the main vector transmitting viruses causing animal diseases such as Bluetongue, African Horse Sickness, and Schmallenberg. It has become widely distributed, with reports from South Africa to southern Europe, and from western Africa to southern China. This study presents a global compendium of Culicoides imicola occurrence between 1943 and 2018, reflecting the most recently compiled and harmonized global dataset derived from peer-reviewed literature. The procedures used in producing the data, as well as the geo-coding methods, database management and technical validation procedures are described. The study provides an updated and comprehensive global database of C. imicola occurrence, consisting of 1 039 geo-coded records from 50 countries. The datasets can be used for risk mapping of the diseases transmitted by C. imicola as well as to develop the global habitat suitability for the vector.
Culicoides biting midges (Diptera: Ceratopogonidae) are the major vectors of bluetongue, Schmallenberg, and African horse sickness viruses. This study was conducted to survey Culicoides species in different parts of Ethiopia and to develop habitat suitability for the major Culicoides species in Ethiopia. Culicoides traps were set in different parts of the country from December 2018 to April 2021 using UV light Onderstepoort traps and the collected Culicoides were sorted to species level. To develop the species distribution model for the two predominant Culicoides species, namely Culicoides imicola and C. kingi, an ensemble modeling technique was used with the Biomod2 package of R software. KAPPA True skill statistics (TSS) and ROC curve were used to evaluate the accuracy of species distribution models. In the ensemble modeling, models which score TSS values greater than 0.8 were considered. Negative binomialregression models were used to evaluate the relationship between C. imicola and C. kingi catch and various environmental and climatic factors. During the study period, a total of 9148 Culicoides were collected from 66 trapping sites. Of the total 9148, 8576 of them belongs to seven species and the remaining 572 Culicoides were unidentified. The predominant species was C. imicola (52.8%), followed by C. kingi (23.6%). The abundance of these two species was highly influenced by the agro-ecological zone of the capture sites and the proximity of the capture sites to livestock farms. Climatic variables such as mean annual minimum and maximum temperature and mean annual rainfall were found to influence the catch of C. imicola at the different study sites. The ensemble model performed very well for both species with KAPPA (0.9), TSS (0.98), and ROC (0.999) for C. imicola and KAPPA (0.889), TSS (0.999), and ROC (0.999) for C. kingi. Culicoides imicola has a larger suitability range compared to C. kingi. The Great Rift Valley in Ethiopia, the southern and eastern parts of the country, and the areas along the Blue Nile and Lake Tana basins in northern Ethiopia were particularly suitable for C. imicola. High suitability for C. kingi was found in central Ethiopia and the Southern Nations, Nationalities and Peoples Region (SNNPR). The habitat suitability model developed here could help researchers better understand where the above vector-borne diseases are likely to occur and target surveillance to high-risk areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.