Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane.
In plants, both abscisic acid (ABA) dependent and independent pathways form the basis for the response to environmental stresses. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) plays a central role in plant stress signal transduction. However, complete annotation and specific expression patterns of SnRK2s in sugarcane remain unclear. For the present study, we performed a full-length cDNA library survey of sugarcane, thus identifying ten SoSnRK2 genes via phylogenetic, local BLAST methods, and various bioinformatics analyses. Phylogenetic analysis indicated division of SoSnRK2 genes into three subgroups, similar to other plant species. Gene structure comparison with Arabidopsis suggested a unique evolutionary imprint of the SnRK2 gene family in sugarcane. Both sequence alignment and structural annotation provided an overview of the conserved N-terminal and variations of the C-terminal, suggesting functional divergence. Transcript and transient expression assays revealed SoSnRK2s to be involved in the responses to diverse stress signals, and strong ABA induction of SoSnRK2s in subgroup III. Co-expression network analyses indicated the existence of both conserved and variable biological functions among different SoSnRK2s members. In summary, this comprehensive analysis will facilitate further studies of the SoSnRK2 family and provide useful information for the functional validation of SoSnRK2s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.