In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging) technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC) samples were applied to a multichannel flow cell that was orthogonal to the detection line arrays for blood group typing. We found that the blood samples were correctly grouped in less than 12 min by the SPR imaging technique, and the results were consistent with those of the standard agglutination technique for all 60 samples. We found that mixed clones of antibodies provided 33%–68% greater change in the SPR signal than the single-clone antibodies. Applying the SPR imaging technique using readily available antibodies may reduce the costs of the antibodies, shorten the measurement time, and increase the throughput.
Cypermethrin is a toxic pesticide in the pyrethroid group. A Surface Enhanced Raman Scattering (SERS) based sensor has been developed to achieve simple pesticide sensing. In this work, rapid detection of cypermethrin by using the handheld Raman spectroscopy coupled with SERS substrate was demonstrated. SERS-active silver nanorods substrate was used to enhance Raman signals of test samples. The effect of exposure time and drop volume of sample was studied for cypermethrin measurement. The results found that the silver nanorods substrate can be used to measure cypermethrin in the range of 10-6 to 10-3 M with a handheld Raman spectrometer. Furthermore, the Raman signal of cypermethrin was confirmed by measuring solid cypermethrin with the standard Raman spectrometer. SERS substrate was competent to detect cypermethrin with a limit of detection (LOD) of 10-6 M.
This paper demonstrates the use of smartphones in an experiment of light absorption and light scattering. The LED display and camera of the smartphone are used as the light source and as the detector, respectively. The color wheel is used to choose the color of the light source to be shone through the sample for analysis. The detector directly measures the intensity of the light that passes through the sample to study light absorption according to the Beer–Lambert law. On the other hand, to investigate the light scattering, the detector orthogonally measures the intensity of the scattered light from the sample. The results of the light absorption correspond to the Beer–Lambert law. The scattered light from the sample is be measured by a smartphone. The experiment is easy to set up, without the need for any further expensive apparatus. We expect that this experiment will be useful for physics teachers to demonstrate light absorption and light scattering in the classroom or in a physics laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.