In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging) technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC) samples were applied to a multichannel flow cell that was orthogonal to the detection line arrays for blood group typing. We found that the blood samples were correctly grouped in less than 12 min by the SPR imaging technique, and the results were consistent with those of the standard agglutination technique for all 60 samples. We found that mixed clones of antibodies provided 33%–68% greater change in the SPR signal than the single-clone antibodies. Applying the SPR imaging technique using readily available antibodies may reduce the costs of the antibodies, shorten the measurement time, and increase the throughput.
Low antigenic expression of ABO subgroup system on red blood cell (RBC) is cause of discrepancy between forward and reverse blood typing in the standard agglutination technique. Neutralization agglutination is employed for verification of the detection of ABH substances in saliva. However, the neutralization technique is complicated, time-consuming and requires expertise. To overcome these drawbacks, surface plasmon resonance (SPR) imaging was developed for ABH antigen detection on RBCs and in saliva. An antibody array was designed to classify the ABO subgroups by anti-A, anti-B, and anti-H antibodies; the array was immobilized on a carboxymethyl-dextran sensor-surface. RBCs and saliva specimens from sixty-four donors were analysed by passing them over the antibody array, where the secretor status and blood group could be simultaneously identified. Consequently, the immobilized antibodies could specifically and quantitatively detect the ABH antigen on RBCs. Using the direct assay, the SPR signal of saliva detection was weaker than that of RBC detection. However, a sandwich assay with a mixture of anti-A, anti-B, and anti-H antibodies could efficiently enhance the signal. The sensor chip provided high specificity (cut-off at 100 to 175 micro refractive index units) and high precision at 0.06%-4.9% CV. The blood group results of the sixty-four donor specimens obtained by SPR agreed with the standard agglutination test with 100% accuracy. SPR could indicate different ABH antigen densities on the RBCs and nearly the same amounts of ABH substances in the saliva of strong and weak subgroups. Finally, we also demonstrated reduced assay time and fewer complications with the SPR imaging platform compared to the neutralization technique.
A flow-induced cell movement assay combined with a surface plasmon resonance (SPR) technique was developed to quantify the agglutination strength, derived from the standard tube-agglutination test. Red blood cells (RBCs), based on the ABO blood group system, were specifically captured by anti-A and/or anti-B antibodies immobilized on a sensor surface. The agglutination strength corresponds to the amount of antigen-antibody interactions or the strength of RBC adhesion. Under a shear flow, the adherent RBCs were forced to move out of the region of interest with different average cell velocities (vc) depending upon the adhesion strength and wall shear stress (WSS). That is, a higher adhesion strength (higher agglutination strength) or lower WSS represents a lower vc or vice versa. In this work, the agglutination strength was derived from the vc that was calculated from the time derivative of the relative SPR signal by using a simple model of cell movement response, whose validity was verified. The vc values of different samples were correlated with their agglutination strengths at a given WSS and antibody surface density. The vc decreased as the agglutination strength increased, which can be considered as a linear regression. The coefficient of variation of the calculated vc decreased to 0.1 as vc increased to 30 μm min(-1). The sensitivity of this assay can be controlled by optimizing the antibody surface density or the WSS. This assay has the capability to resolve the antigen density of A1 and B RBCs from that of A1B RBCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.