Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.
Aminated polyethersulfone (PES-NH 2 ) has been synthesized and used with carboxylated activated carbon (AC-COOH) as an adsorbent using two different methods: in situ and ex situ techniques. The chemical modification of polyethersulfone (PES) to introduce -NH 2 functions was used to overcome the hydrophobicity of PES which maximizes its use in water treatment applications whereas applying AC-COOH to this polymer provides a promising effective method as an adsorbent-separation technique to remove dye pollutants from wastewater. The structure and characterization of aminated polyethersulfone with carboxylated activated carbon (PES-NH 2 -AC-COOH) were identified using proton nuclear magnetic resonance ( 1 H-NMR), Fourier transform infrared (FT-IR spectroscopy), X-ray diffraction (XRD), thermal analysis (TA), and a scanning electron microscopy (SEM). The performance of PES-NH 2 in situ and ex situ with AC-COOH was tested for the adsorption of cationic (methylene blue) and anionic (acid red 1) dyes from an aquatic environment. The results of the study showed a better thermal stability for the PES-NH 2 with 20% AC-COOH with both in situ and ex situ techniques as well as an excellent adsorption performance in comparison with the bare PES-NH 2 . The resultant polymers displayed significantly high adsorption rates for the acid red dye (60% and 68%) and methylene blue dye (61% and 88%) by PES-NH 2 with AC-COOH using in situ and ex situ techniques, respectively, in comparison with the control (PES-NH 2 ) which showed lower adsorption rates for both dyes (21% for acid red and 33% for methylene blue). Lastly, the study experimental measurements found the most suitable model to describe the kinetic behavior of the acid red dye adsorption by our developed polymer (by PES-NH 2 with AC-COOH) to be the pseudo-second-order kinetic model.
Diazomethane (CH(2)N(2)) was used to methylate the non-specific binding sites after molecularly imprinted polymer particles were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker and bisphenol A (BPA) as the template. After diazomethane treatment and subsequent removal of BPA by triethylamine, the treated molecularly imprinted polymer (TMIP) particles were tested for binding selectivity toward BPA and other organic compounds by capillary electrophoresis with ultraviolet detection. Even in the presence of compounds that were positively charged, neutral or negatively charged in the background electrolyte, BPA was selectively bound with the highest efficiency. A significant decrease in the affinity for metformin (MF, a positively charged compound), along with (13) C nuclear magnetic resonance spectra and electrophoretic mobility data, provided strong evidence for the elimination of non-specific -COOH binding sites in the TMIP particles. Only 8% of MF and 16% of diclofenac sodium salt (a negatively charged compound) remained as non-specific bindings because of hydrophobic interactions. Further comparison with poly(methyl methacrylate) revealed the true merits of the TMIP, which exhibited minimal non-specific bindings while preserving a high level of specific binding owing to molecular recognition.
Bisphenol A (BPA) is an estrogen-mimicking chemical that can be selectively detected in water using a chemical sensor based on molecularly imprinted polymers (MIPs). However, the utility of BPA-MIPs in sensor applications is limited by the presence of non-specific binding sites. This study explored a dual approach to eliminating these sites: optimizing the molar ratio of the template (bisphenol A) to functional monomer (methacrylic acid) to cross-linker (ethylene glycol dimethacrylate), and esterifying the carboxylic acid residues outside of specific binding sites by treatment with diazomethane. The binding selectivity of treated MIPs and non-treated MIPs for BPA and several potential interferents was compared by capillary electrophoresis with ultraviolet detection. Baclofen, diclofenac and metformin were demonstrated to be good model interferents to test all MIPs for selective binding of BPA. Treated MIPs demonstrated a significant decrease in binding of the interferents while offering high selectivity toward BPA. These results demonstrate that conventional optimization of the molar ratio, together with advanced esterification of non-specific binding sites, effectively minimizes the residual binding of interferents with MIPs to facilitate BPA sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.