SummaryGerm cells differentiate into oocytes that become totipotent upon fertilization. How the highly specialized oocyte acquires this distinct cell fate is poorly understood. During Drosophila oogenesis, H3K9me3 histone methyltransferase SETDB1 translocates from the cytoplasm to the nucleus of germ cells concurrent with oocyte specification. Here, we discovered that nuclear SETDB1 is required to silence a cohort of differentiation-promoting genes by mediating their heterochromatinization. Intriguingly, SETDB1 is also required for the upregulation of 18 of the ~30 nucleoporins (Nups) that comprise the nucleopore complex (NPC). NPCs in turn anchor SETDB1-dependent heterochromatin at the nuclear periphery to maintain H3K9me3 and gene silencing in the egg chambers. Aberrant gene expression due to loss of SETDB1 or Nups results in loss of oocyte identity, cell death and sterility. Thus, a feedback loop between heterochromatin and NPCs promotes transcriptional reprogramming at the onset of oocyte specification that is critical to establish oocyte identity.
Stem cells in many systems, including Drosophila germline stem cells (GSCs), increase ribosome biogenesis and translation during terminal differentiation. Here, we show that pseudouridylation of ribosomal RNA (rRNA) mediated by the H/ACA box is required for ribosome biogenesis and oocyte specification. Reducing ribosome levels during differentiation decreased the translation of a subset of mRNAs that are enriched for CAG repeats and encode polyglutamine-containing proteins, including differentiation factors such as RNA-binding Fox protein 1. Moreover, ribosomes were enriched at CAG repeats within transcripts during oogenesis. Increasing TOR activity to elevate ribosome levels in H/ACA box-depleted germlines suppressed the GSC differentiation defects, whereas germlines treated with the TOR inhibitor rapamycin had reduced levels of polyglutamine-containing proteins. Thus, ribosome biogenesis and ribosome levels can control stem cell differentiation via selective translation of CAG repeat-containing transcripts.
Stem cells in many systems, including
Drosophila
germline stem cells (GSCs), increase ribosome biogenesis and translation during terminal differentiation. Here, we show that the H/ACA small nuclear ribonucleoprotein (snRNP) complex that promotes pseudouridylation of ribosomal RNA (rRNA) and ribosome biogenesis is required for oocyte specification. Reducing ribosome levels during differentiation decreased the translation of a subset of messenger RNAs that are enriched for CAG trinucleotide repeats and encode polyglutamine-containing proteins, including differentiation factors such as RNA-binding Fox protein 1. Moreover, ribosomes were enriched at CAG repeats within transcripts during oogenesis. Increasing target of rapamycin (TOR) activity to elevate ribosome levels in H/ACA snRNP complex–depleted germlines suppressed the GSC differentiation defects, whereas germlines treated with the TOR inhibitor rapamycin had reduced levels of polyglutamine-containing proteins. Thus, ribosome biogenesis and ribosome levels can control stem cell differentiation via selective translation of CAG repeat–containing transcripts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.