Abundant oil palm empty fruit bunches (OPEFB) generated from the palm oil mill industry create huge problems for the environment and the palm oil mill itself. Despite the importance of determining the amount of oil left in the OPEFB, little research of that nature has been reported. This study describes the oil content and physicochemical characteristics of OPEFB fibers, detection of oil attachment on the fiber’s surface using sudan red dye, contact angle values, and also the quality of the residual oil. The OPEFB fibers, which are normally used as mulch for the palm oil mill, have been found to be a rich source of lignocellulosic materials, especially cellulose, which constitutes 33.70 to 35.10% for a press-shredded fiber. Residual oil (3 to 7% on dry basis) extracted from the OPEFB exhibits good quality parameters such as deterioration of bleachability index (DOBI), free fatty acid (FFA), and peroxide value (PV). The DOBI values were still in the acceptable range, which is from 1.94 to 2.43, while the PV results are within the range of about 1.84 to 2.80 meq/kg. The major fatty acids of the residual fiber oil were palmitic and oleic acids, at 39.77% to 39.89% and 39.55% to 42.60%, respectively. There were no significant changes in the macronutrients and quality of the OPEFB residual oil. Therefore, the residual oil from the OPEFB should be recovered and reused as a raw material for industrial applications, boosting the oil extraction rate (OER) in the palm oil industry.
A large volume of oil palm empty fruit bunch (EFB) is generated as waste feedstock around the globe. This abundant waste containing 0.75% oil on average could be a promising feedstock for biodiesel production if oil recovery could be accomplished in an economicallyviable and environmentally-friendly manner. To achieve that, a new method called High Pressure Water Spray (HPWS) system was introduced and performed by spraying pressurized water (500 psi) at 30 °C, 60 °C, and 90 °C and combination of water-steam at 120 °C and 150 °C onto the surface of the oil palm empty fruit bunches (EFB). The results obtained indicated that, the highest oil removal yield of 94.41 ± 0.02 wt% was obtained at 150 °C. Moreover, bioprospection of biodiesel properties based on fatty acid methyl ester (FAME) profile revealed that the biodiesels produced from the fresh crude palm oil and residual oil were comparable and were in accordance with international standards. In addition to that, the HPWS process led to an enhanced quality of the remaining lignocellulosic materials for conversion into other value added bio-products such as ligno-ethanol by decreasing lignin content and increasing cellulose content. In view of environmental impact assessment, the HPWS system showed favorable impacts on all the end-point damage categories especially in resources damage category. Moreover, economic assessment showed that the recovered CPO could be generated at a low price of USD 0.41 vs. USD 0.66 for CPO. Overall, this process could drastically increase the market value of an abundant type of waste in many parts of the world, i.e., EFB leading to the generation of additional wealth for the palm oil industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.