Millimeter wave technology will be dominating the fifth-generation networks due to the clear advantage of higher frequency bands and hence wider spectrum. In this paper, the indoor radio wave propagation at 28 GHz is studied by developing an efficient three-dimensional ray tracing (ETRT) method. The simulation software based on the ETRT model has been verified by measurement data. The received signal strength indication and path loss have shown significant agreement between simulation and measurement. Compared with the conventional shooting bouncing ray tracing method, the proposed ETRT method has better agreement with measurement data.
To provide enhanced mobile services, the 5G system is expected to further densify its network infrastructure and scale up the deployment of massive antenna arrays that emit highenergy beams using the millimeter wave spectrum. These radically new features will significantly impact the EMF exposure level in the 5G networks. In this paper, EMF exposure for 5G mobile networks in a dense urban environment is investigated using a raytracing approach for the uplink (UL) and downlink (DL). A massive multi-input multi-output antenna with multiuser beamforming capability is considered for the 5G base station. For DL, the maximum rate transmission (MRT) technique is used to direct the beams toward all the active users, and total power density (PD) is used to evaluate the EMF exposure level. On the other hand, EMF exposure due to UL is investigated using electric field strength and specific absorption rate (SAR). The proposed ray-tracing based EMF evaluation framework exploits detailed information of the scenarios, including 3D building geometry, EM characteristics, multipath propagation, user locations and beamforming radiation pattern, to effectively evaluate the EMF's spatial variation levels. Following this evaluation procedure, the impact of different user densities and distributions is analyzed in terms of PD and SAR. Results show that for DL, the peak PD increases from 6.65 to 24.92 dBm/m 2 when the number of active users in the area increases from a single user to 100%. Considering the worst-case scenario, the PD exposure reaches 62% of the ICNIRP's limit. Saturation of the spatial EMF distribution occurs when the number of active DL beams is above 25%. For UL, within 5m radius of the user's location, the average E-field may increase from 2.40 to 3.98 V/m. (increment of 66%) if the number of active users in the area increases from 25% to 100%. Moreover, when 100% of the users are actively transmitting, there is only a 10% probability that the SAR may exceed 0.06 W/kg (or 3% of the ICNIRP's limit).
Worldwide Researchers and scientist have started the investigation of the sixth generation (6G) while the fifth generation (5G) cellular system is being deployed. Under this main investigation the main aim of 6G is to provide intelligent and ubiquitous wireless connectivity with Terabits per second (Tbps) data rates. Accurate location information of the mobile devices is very much useful to accomplish these aims with the improvements of various parameters of wireless communication. The development in communication technology often creates new opportunities to improve the localization efficiency as demonstrated by the expected centimetre-level localization accuracy in 6G. While there are comprehensive literatures separately on wireless localization or communications, the 6G study is still in its inception. This article is therefore intended to provide an overview of localization techniques towards 6G wireless networks. Finally, some interesting future localization technique research directions are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.