Abstract-A new Unmanned Aerial Vehicle (UAV) Synthetic Aperture Radar (SAR) has been developed at Multimedia University, in collaboration with Agency of Remote Sensing Malaysia. The SAR operates at C-band, single V V -polarization, with 5 m × 5 m spatial resolution. Its unique features include compact in size, light weight, low power and capable of performing real-time imaging. A series of field measurements and flight tests has been conducted and good quality SAR images have been obtained. The system will be used for monitoring and management of earth resources such as paddy fields, oil palm plantation and soil surface. This paper reports the system design and development, as well as some preliminary results of the UAVSAR.
Abstract-This paper discusses the design and development of a FPGA-based chirp generator for high resolution Unmanned Aerial Vehicle (UAV) Synthetic Aperture Radar. The desired bandwidth of the chirp signal is 100 MHz (combination of I and Q channels) with a chirp rate of 5 MHz/µs. Two algorithms based on the Memory-based architecture and the Direct Digital Synthesizer (DDS) architecture are presented. The measurement results indicate that the DDS chirp generator is a preferred choice for high-resolution SAR application.
Abstract-The Linear Frequency Modulation (LFM) waveform is the most commonly and extensively used signal in practical radar system. However a compressed LFM signal at the receiver will produce the first sidelobe at a level of −13 dB to the peak of the main lobe. A weighting function is needed to apply in order to reduce the sidelobes. However, the penalty of mismatch loss is clearly evident. It may reduce output SNR, typically by 1 to 2 dB. Every single dB of additional SNR can have great effects in reducing false alarm rates in target detection applications. In an effort to achieve low autocorrelation sidelobe level without applying weighting function, Non-Linear Frequency Modulation (NLFM) signal has been investigated. This paper describes the sidelobe reduction techniques using simple two-stage FM waveform, modified two-stage FM waveform and tri-stage FM waveform. Simulation results of the proposed NLFM signal are presented. Sidelobe reduction of more than −19 dB can be achieved by this design without any weighting technique applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.