The present study provides a detailed investigation of the neck-configuration and Q-values on the cluster decay of proton-rich even-even 124-128Ba isotopes using the relativistic mean-field (RMF) formalism with the NL3* parameter set. The densities of the interacting nuclei from the RMF approach are folded with the R3Y and M3Y interactions to obtain the nuclear potential via the double-folding technique. The preformed cluster model (PCM) based on the quantum mechanical fragmentation theory is employed for the calculation of the decay half-lives. The preformation probability P0 and the penetration probabilities are estimated by the phenomenological scaling factor of Blendowske & Walliser and the WKB approximation respectively. The present investigation reveals that the M3Y and R3Y are associated with different barrier characteristics which are significantly modified with a little variation in the neck-length parameter ΔR. From the Q-value analysis, we have demonstrated that α-decay may not be a favourable decay mode for proton-rich barium isotopes with A > 122.
A new α-emitting has been observed experimentally for neutron deficient 214U which opens the window to theoretically investigate the ground state properties of 214,216,218U isotopes and to examine α-particle clustering around the shell closure. The decay half-lives are calculated within the preformed cluster-decay model (PCM). To obtain the α-daughter interaction potential, the RMF densities are folded with the newly developed R3Y and the well-known M3Y NN potentials for comparison. The alpha preformation probability (Pα) is calculated from the analytic formula of Deng and Zhang. The WKB approximation is employed for the calculation of the transmission probability. The individual binding energies (BE) for the participating nuclei are estimated from the relativistic mean-field (RMF) formalism and those from the finite range droplet model (FRDM) as well as WS3 mass tables. In addition to Z=84, the so-called abnormal enhancement region, i.e., 84≤Z≤90 and N<126, is normalised by an appropriately fitted neck-parameter ΔR. On the other hand, the discrepancy sets in due to the shell effect at (and around) the proton magic number Z=82 and 84, and thus a higher scaling factor ranging from 10−5–10−8 is required. Additionally, in contrast with the experimental binding energy data, large deviations of about 5–10 MeV are evident in the RMF formalism despite the use of different parameter sets. An accurate prediction of α-decay half-lives requires a Q-value that is in proximity with the experimental data. In addition, other microscopic frameworks besides RMF could be more reliable for the mass region under study. α-particle clustering is largely influenced by the shell effect.
We present a phenomenological theory of nuclei that incorporates clustering at the nuclear surface in a general form. The theory explains the recently extracted large symmetry energy by Natowitz et al. at low densities of nuclear matter and is fully consistent with the static properties of nuclei. In phenomenological way clusters of all sizes, shapes along with medium modifications are included. Symmetric nuclear matter properties are discussed in detail. Arguments are given that lead to an equation of state of nuclear matter consistent with clustering in the low density region. We also discuss properties of asymmetric nuclear matter. Because of clustering, an interesting interpretation of the equation of state of asymmetric nuclear matter emerges. As a framework, an extended version of Thomas Fermi theory is adopted for nuclei which also contain phenomenological pairing and Wigner contributions. This theory connects the nuclear matter equation of state, which incorporate clustering at low densities, with clustering in nuclei at the nuclear surface. Calculations are performed for various equation of state of nuclear matter. We consider measured binding energies of 2149 nuclei for N, Z ≥ 8. The importance of quartic term in symmetry energy is demonstrated at and below the saturation density of nuclear matter. It is shown that it is largely related to the use of, ab initio, realistic equation of state of neutron matter, particularly the contribution arising from the three neutron interaction and somewhat to clustering.Reasons for these are discussed. Because of clustering the neutron skin thickness in nuclei is found to reduce significantly. Theory predicts new situations and regimes to be explored both theoretically and experimentally. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.