Bone metastasis is a common, yet serious, complication of breast cancer. Breast cancer cells that extravasate from blood vessels to the bone devastate bone quality by interacting with bone cells and disrupting the bone remodeling balance. Although exercise is often suggested as a cancer intervention strategy and mechanical loading during exercise is known to regulate bone remodeling, its role in preventing bone metastasis remains unknown. We developed a novel in vitro microfluidic tissue model to investigate the role of osteocytes in the mechanical regulation of breast cancer bone metastasis. Metastatic MDA-MB-231 breast cancer cells were cultured inside a 3D microfluidic lumen lined with human umbilical vein endothelial cells (HUVECs), which is adjacent to a channel seeded with osteocyte-like MLO-Y4 cells. Physiologically relevant oscillatory fluid flow (OFF) (1 Pa, 1 Hz) was applied to mechanically stimulate the osteocytes. Hydrogel-filled side channels in-between the two channels allowed real-time, bi-directional cellular signaling and cancer cell extravasation over 3 days. The applied OFF was capable of inducing intracellular calcium responses in osteocytes (82.3% cells responding with a 3.71 fold increase average magnitude). Both extravasation distance and percentage of extravasated side-channels were significantly reduced with mechanically stimulated osteocytes (32.4% and 53.5% of control, respectively) compared to static osteocytes (102.1% and 107.3% of control, respectively). This is the first microfluidic device that has successfully integrated stimulatory bone fluid flow, and demonstrated that mechanically stimulated osteocytes reduced breast cancer extravasation. Future work with this platform will determine the specific mechanisms involved in osteocyte mechanoregulation of breast cancer bone metastasis, as well as other types of cancer metastasis and diseases.
Fluid flow behaviour in paper is of increasing interest due to the advantages and expanding use of microfluidic paper-based analytical devices (known as µPADs). Applications are expanding from those which often have low sample fluid volumes, such as diagnostic testing, to those with an abundance of sample fluid, such as water quality testing. The rapid development of enhanced features in μPADs, along with a need for increased sensitivity and specificity in the embedded chemistry requires understanding the passively-driven fluid motion in paper to enable precise control and consistency of the devices. It is particularly important to understand the influence of parameters associated with larger fluid volumes and to quantify their impact. Here, we experimentally investigate the impacts of several properties during imbibition in paper, including geometry (larger width and length) and the surrounding conditions (humidity and temperature) using abundant fluid reservoirs. Fluid flow velocity in paper was found to vary with temperature and width, but not with length of the paper strip and humidity for the conditions we tested. We observed substantial post-wetting flow for paper strips in contact with a large fluid reservoir.
In breast cancer development, crosstalk between mammary epithelial cells and neighboring vascular endothelial cells is critical to understanding tumor progression and metastasis, but the mechanisms of this dynamic interplay are not fully understood. Current cell culture platforms do not accurately recapitulate the 3D luminal architecture of mammary gland elements. Here, we present the development of an accessible and scalable microfluidic coculture system that incorporates two parallel 3D luminal structures that mimic vascular endothelial and mammary epithelial cell layers, respectively. This parallel 3D lumen configuration allows investigation of endothelial-epithelial crosstalk and its effects of the comigration of endothelial and epithelial cells into microscale migration ports located between the parallel lumens. We describe the development and application of our platform, demonstrate generation of 3D luminal cell layers for endothelial cells and three different breast cancer cell lines, and quantify their migration profiles based on number of migrated cells, area coverage by migrated cells, and distance traveled by individual migrating cells into the migration ports. Our system enables analysis at the single-cell level, allows simultaneous monitoring of endothelial and epithelial cell migration within a 3D extracellular matrix, and has potential for applications in basic research on cellular crosstalk as well as drug development.
Abstract:In this paper, we present a microfluidic paper-based analytical device (µPAD) with a gold nanosensor functionalized with α-lipoic acid and thioguanine (Au-TA-TG) to detect whether the arsenic level of groundwater from hand tubewells in Bangladesh is above or below the World Health Organization (WHO) guideline level of 10 µg/L. We analyzed the naturally occurring metals present in Bangladesh groundwater and assessed the interference with the gold nanosensor. A method was developed to prevent interference from alkaline metals found in Bangladesh groundwater (Ca, Mg, K and Na) by increasing the pH level on the µPADs to 12.1. Most of the heavy metals present in the groundwater (Ni, Mn, Cd, Pb, and Fe II) did not interfere with the µPAD arsenic tests; however, Fe III was found to interfere, which was also prevented by increasing the pH level on the µPADs to 12.1.The µPAD arsenic tests were tested with 24 groundwater samples collected from hand tubewells in three different districts in Bangladesh: Shirajganj, Manikganj, and Munshiganj, and the predictions for whether the arsenic levels were above or below the WHO guideline level agreed with the results obtained from laboratory testing. The µPAD arsenic test is the first paper-based test validated using Bangladesh groundwater samples and capable of detecting whether the arsenic level in groundwater is above or below the WHO guideline level of 10 µg/L, which is a step towards enabling the villagers who collect and consume the groundwater to test their own sources and make decisions about where to obtain the safest water.
Angiogenesis, the development of new blood vessels from existing vasculature, is a key process in normal development and pathophysiology. In vitro models are necessary for investigating mechanisms of angiogenesis and developing antiangiogenic therapies. Microfluidic cell culture models of angiogenesis are favored for their ability to recapitulate 3D tissue structures and control spatiotemporal aspects of the microenvironments. To capture the angiogenesis process, microfluidic models often include endothelial cells and a fibroblast component. However, the influence of fibroblast organization on resulting angiogenic behavior remains unclear. Here a comparative study of angiogenic sprouting on a microfluidic chip induced by fibroblasts in 2D monolayer, 3D dispersed, and 3D spheroid culture formats, is conducted. Vessel morphology and sprout distribution for each configuration are measured, and these observations are correlated with measurements of secreted factors and numerical simulations of diffusion gradients. The results demonstrate that angiogenic sprouting varies in response to fibroblast organization with correlating variations in secretory profile and secreted factor gradients across the microfluidic device. This study is anticipated to shed light on how sprouting dynamics are mediated by fibroblast configuration such that the microfluidic cell culture design process includes the selection of a fibroblast component where the effects are known and leveraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.