In this study, we intended to differentiate patients with essential tremor (ET) from tremor dominant Parkinson disease (PD). Accelerometer and electromyographic signals of hand movement from standardized upper extremity movement tests (resting, holding, carrying weight) were extracted from 13 PD and 11 ET patients. The signals were filtered to remove noise and non-tremor high frequency components. A set of statistical features was then extracted from the discrete wavelet transformation of the signals. Principal component analysis was utilized to reduce dimensionality of the feature space. Classification was performed using support vector machines. We evaluated the proposed method using leave one out cross validation and we report overall accuracy of the classification. With this method, it was possible to discriminate 12/13 PD patients from 8/11 patients with ET with an overall accuracy of 83%. In order to individualize this finding for clinical application we generated a posterior probability for the test result of each patient and compared the misclassified patients, or low probability scores to available clinical follow up information for individual cases. This non-standardized post hoc analysis revealed that not only the technical accuracy but also the clinical accuracy limited the overall classification rate. We show that, in addition to the successful isolation of diagnostic features, longitudinal and larger sized validation is needed in order to prove clinical applicability.
Robust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson’s disease (PD) is missing. In this paper, we compare four prevalent gait segmentation methods in order to reveal their strengths and drawbacks in gait processing. We considered peak detection from event-based methods, two variations of dynamic time warping from template matching methods, and hierarchical hidden Markov models (hHMMs) from machine learning methods. To evaluate the methods, we included two supervised and instrumented gait tests that are widely used in the examination of Parkinsonian gait. In the first experiment, a sequence of strides from instructed straight walks was measured from 10 PD patients. In the second experiment, a more heterogeneous assessment paradigm was used from an additional 34 PD patients, including straight walks and turning strides as well as non-stride movements. The goal of the latter experiment was to evaluate the methods in challenging situations including turning strides and non-stride movements. Results showed no significant difference between the methods for the first scenario, in which all methods achieved an almost 100% accuracy in terms of F-score. Hence, we concluded that in the case of a predefined and homogeneous sequence of strides, all methods can be applied equally. However, in the second experiment the difference between methods became evident, with the hHMM obtaining a 96% F-score and significantly outperforming the other methods. The hHMM also proved promising in distinguishing between strides and non-stride movements, which is critical for clinical gait analysis. Our results indicate that both the instrumented test procedure and the required stride segmentation algorithm have to be selected adequately in order to support and complement classical clinical examination by sensor-based movement assessment.
Mobile gait analysis systems using wearable sensors have the potential to analyze and monitor pathological gait in a finer scale than ever before. A closer look at gait in Parkinson’s disease (PD) reveals that turning has its own characteristics and requires its own analysis. The goal of this paper is to present a system with on-shoe wearable sensors in order to analyze the abnormalities of turning in a standardized gait test for PD. We investigated turning abnormalities in a large cohort of 108 PD patients and 42 age-matched controls. We quantified turning through several spatio-temporal parameters. Analysis of turn-derived parameters revealed differences of turn-related gait impairment in relation to different disease stages and motor impairment. Our findings confirm and extend the results from previous studies and show the applicability of our system in turning analysis. Our system can provide insight into the turning in PD and be used as a complement for physicians’ gait assessment and to monitor patients in their daily environment.
Background Gait symptoms and balance impairment are characteristic indicators for the progression in Parkinson’s disease (PD). Current gait assessments mostly focus on straight strides with assumed constant velocity, while acceleration/deceleration and turning strides are often ignored. This is either due to the set up of typical clinical assessments or technical limitations in capture volume. Wearable inertial measurement units are a promising and unobtrusive technology to overcome these limitations. Other gait phases such as initiation, termination, transitioning (between straight walking and turning) and turning might be relevant as well for the evaluation of gait and balance impairments in PD. Method In a cohort of 119 PD patients, we applied unsupervised algorithms to find different gait clusters which potentially include the clinically relevant information from distinct gait phases in the standardized 4x10 m gait test. To clinically validate our approach, we determined the discriminative power in each gait cluster to classify between impaired and unimpaired PD patients and compared it to baseline (analyzing all straight strides). Results As a main result, analyzing only one of the gait clusters constant, non-constant or turning led in each case to a better classification performance in comparison to the baseline (increase of area under the curve (AUC) up to 19% relative to baseline). Furthermore, gait parameters (for turning, constant and non-constant gait) that best predict motor impairment in PD were identified. Conclusions We conclude that a more detailed analysis in terms of different gait clusters of standardized gait tests such as the 4x10 m walk may give more insights about the clinically relevant motor impairment in PD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.