Background: Climate change based on temperature, humidity and wind can improve many characteristics of the arthropod carrier life cycle, including survival, arthropod population, pathogen communication, and the spread of infectious agents from vectors. This study aimed to find association between content of disease followed climate change we demonstrate in humans. Methods: All the articles from 2016 to 2021 associated with global climate change and the effect of vector-borne disease were selected form databases including PubMed and the Global Biodiversity information facility database. All the articles selected for this short review were English. Results: Due to the high burden of infectious diseases and the growing evidence of the possible effects of climate change on the incidence of these diseases, these climate changes can potentially be involved with the COVID-19 epidemic. We highlighted the evidence of vector-borne diseases and the possible effects of climate change on these communicable diseases. Conclusion: Climate change, specifically in rising temperature system is one of the world’s greatest concerns already affected pathogen-vector and host relation. Lice parasitic, fleas, mites, ticks, and mosquitos are the prime public health importance in the transmission of virus to human hosts.
SARS-COV-2 (COVID-19) the virus that caused an epidemic of sever acute respiratory syndrome is what the world has been dealing with since Dec 2019. As the pandemic continues different variants that emerge during mutations have become the latest concern, with notable examples detected in South Africa, Brazil, and UK. Variants are complicated and each one is a collection of several mutations, all of which have the potential to change the virus in unexpected ways. Studying variants is imperative as they can lead the epidemic to the increase of population immunity. In the present study, we reviewed key mutations and concerning variants according to the WHO tracking Sars-Cov-2 program. Databases were searched through Feb to Mar 2022. Overall, 477 studies were extracted from databases, among them 165 studies included mutations, 239 included COVID-19 variants and 43 included both mutations and variants. At the final step of data screening 24 studies associated to mutations, 31 studies with the highlighted information on COVID-19 variants and 31 studies related to both mutations and variants were extracted for this review article. In conclusion, analyses of the genomic sequence of SARS-CoV-2 indicate that structural proteins are key molecules in the assembly of virus while NSPs can have different biochemical properties and possibly cellular functions.
Due to their interesting features including negligible volatility, ease of designing in the construction, good chemical, and thermal stabilities, and excellent ionic conductivity, ionic liquids (ILs) have attracted a lot of attention to themselves in recent years. They are constructed from asymmetric anions and cations and are found in a liquid state lower than 100 • C. Their unique features introduce them as candidates for the application in the structure of different types of electrochemical biosensors, in which they could act as electrolytes, or could be used
The dopamine (DA) metabolism changes are significant in Parkinson’s disease (PD). Levels of monoamine oxidases (MAOs) play a critical role in DA metabolism and oxidative damage. Increased levels of the MAO-B enzyme in the elderly raise oxidative damage and enhance neurodegenerative processes. Inhibiting MAO-B as an attractive target would be the best method for treating and understanding Parkinson’s disease. This study aimed to recognize a suitable inhibitor for the MAO-B enzyme using computational biology and compared it with Safinamide as a positive control. We used various computational biology techniques such as binding free energy, virtual screening, molecular dynamics (MD), and docking considerations to achieve the goal. To obtain a potent inhibitor, 41,852 compounds were taken from the Zinc database. After preparing compounds and the MAO-B enzyme, screening was performed using AutoDock Vina software. After screening, a potent natural inhibitor (ZINC00261335) was picked, and then, subsequent MD simulations for both ZINC00261335 and Safinamide were conducted via GROMACS software. The stability of the MAO-B_ZINC00261335 complex was excellent during the simulation, and the results of MM-PBSA analysis explicated that ZINC00261335 with ([Formula: see text]118.353[Formula: see text]kJ[Formula: see text]mol[Formula: see text]) is more potent than Safinamide ([Formula: see text]89.305[Formula: see text]kJ[Formula: see text]mol[Formula: see text]). Ultimately, the ADME study (lipophilicity, drug similarity and pharmacokinetic parameters) for ZINC00261335 was revealed, which is acceptable for human use. This study indicates that ZINC00261335 is a suitable MAO-B inhibitor and a great candidate for more laboratory studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.