Total suspended sediment (TSS) is a water quality parameter that is used to understand sediment transport, aquatic ecosystem health, and engineering problems. The majority of TSS in water bodies is due to natural and human factors such as brought by river runoff, coastal erosion, dredging activities, and waves. It is an important parameter that should be monitored periodically, particularly over the dynamic coastal region. This study aims to monitor spatiotemporal TSS concentration over Teluk Lipat, Malaysia. To date, there are two commonly used methods to monitor TSS concentration over wide water regions. Firstly, field sampling is known very expensive and time-consuming method. Secondly, the remote sensing technology that can monitor spatiotemporal TSS concentration freely. Although remote sensing technology could overcome these problems, universal empirical or semiempirical algorithms are still not available. Most of the developed algorithms are on a regional basis. To measure TSS concentration over the different regions, a new regional algorithm needs to develop. To do so, two field trip was conducted in the study area concurrent with the passing of Landsat 8. A total of 30 field samples were collected from 30 sampling points during the first field trip and 30 samples from 30 samplings from the second field trip. The samples were then analyzed using an established method to develop the TSS algorithm. The data obtained from the first field trip were then used to develop a regional TSS algorithm using the regression analysis technique. The developed algorithm was then validated by using data obtained from the second field trip. The results demonstrated that TSS in the study area is highly correlated with three Landsat 8 bands, namely green, near-infrared (NIR), and short-wavelength (SWIR) bands, with R2 = 0.79. The TSS map is constructed using the algorithm. Analyses of the image suggest that the highest TSSs are mainly observed along the coastal line and over the river mouth. It suggested that the main contributing factors over the study area are river runoff and wave splash.
This paper presents the results of an investigation on the effect of 2T oil blend on the performance of Spark Ignition (SI) engine. Three different types of 2T-oils; mineral oil, semi-synthetic oil and fully synthetic oil were tested according to blend ratio before the mixing process with fuel in the carburetor. In the experiment, a two-stroke single-cylinder engine was coupled to a 20 kW generator dynamometer to measure engine performance parameters; engine torque, engine power (B.P), brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and brake mean effective pressure (BMEP) at various engine speeds with maximum engine load. The results show correlation between engine performances and 2T-oil blended as a function of type of 2T-oils used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.