SynopsisSkin ageing is an irreversible process that is caused by both intrinsic and extrinsic factors. The possibility of arresting or delaying skin ageing represents a large research area and has a big potential in the cosmetics sector. Recently, the polypeptide lysine-threoninethreonine-lysine-serine (KTTKS) has attracted a lot of attention and it features in numerous up-market cosmetic products where it has become erroneously associated with the term 'pentapeptide'. In this study, we review in detail KTTKS and its major derivatives, in terms of the limited information in the literature and an appraisal of its physicochemical and theoretical skin permeation properties. There appears to be a sound in vitro basis for its action on fibroblasts due to its stimulatory effect on extracellular matrix synthesis, where the stimulatory effect of KTTKS is specific to collagen types I and III and fibronectin expression. However, there is a surprising absence of in vitro skin penetration data in the literature, and there are relatively few clinical studies using these materials.
Ré suméLe vieillissement cutané est un processus irréversible causé par des facteurs tant intrinsèques qu'extrinsèques. La possibilité d'arrêter ou de retarder le vieillissement cutané représente un grand secteur de recherche et grand potentiel dans le secteur cosmétique. Récem-ment, le polypeptide lysine-thréonine-thréonine-lysine-serine (KTTKS) a attiré l'attention. Il est présent dans de nombreux produits cosmétiques haut de gamme où il est faussement associé au terme de 'penta peptide'. Dans cette revue, nous examinons en détail KTTKS et ses dérivés majeurs, avec dans la littérature des informations limitées quant à l'évaluation de ses propriétés physicochimiques et celles de perméation cutanée théoriques. Il semble y avoir un fondement à propos de son action in vitro sur des fibroblastes avec un effet de KTTS stimulant de la synthèse de la matrice extracellulaire, avec une activité spécifique aux collagènes de type I et III et à l'expression de la fibronectine. Cependant, il y a, dans la littérature, une absence surprenante de données concernant la pénétration cutanée in vitro et il y a relativement peu d'études cliniques utilisant cet ingrédient.
To investigate the use of chitosan nanoparticles (CS-TPP-NPs) as carriers for α- and β-arbutin. In this study, CS-TPP-NPs containing α- and β-arbutin were prepared via the ionic cross-linking of CS and TPP and characterized for particle size, zeta potential, and dispersity index. The entrapment efficiency and loading capacity of various β-arbutin concentrations (0.1, 0.2, 0.4, 0.5, and 0.6%) were also investigated. SEM, TEM FTIR, DSC and TGA analyses of the nanoparticles were performed to further characterize the nanoparticles. Finally, stability and release studies were undertaken to ascertain further the suitability of the nanoparticles as a carrier system for α- and β-arbutin. Data obtained clearly indicates the potential for use of CS-TPP-NPs as a carrier for the delivery of α- and β-arbutin. The size obtained for the alpha nanoparticles (α-arbutin CSNPs) ranges from 147 to 274 d.nm, with an increase in size with increasing alpha arbutin concentration. β-arbutin nanoparticles (β-arbutin CSNPs) size range was from 211.1 to 284 dn.m. PdI for all nanoparticles remained between 0.2-0.3 while the zeta potential was between 41.6-52.1 mV. The optimum encapsulation efficiency and loading capacity for 0.4% α-arbutin CSNPs were 71 and 77%, respectively. As for β-arbutin, CSNP optimum encapsulation efficiency and loading capacity for 0.4% concentration were 68 and 74%, respectively. Scanning electron microscopy for α-arbutin CSNPs showed a more spherical shape compared to β-arbutin CSNPs where rod-shaped particles were observed. However, under transmission electron microscopy, the shapes of both α- and β-arbutin CSNP nanoparticles were spherical. The crystal phase identification of the studied samples was carried out using X-ray diffraction (XRD), and the XRD of both α and β-arbutin CSNPs showed to be more crystalline in comparison to their free form. FTIR spectra showed intense characteristic peaks of chitosan appearing at 3438.3 cm (-OH stretching), 2912 cm (-CH stretching), represented 1598.01 cm (-NH) for both nanoparticles. Stability studies conducted for 90 days revealed that both α- and β-arbutin CSNPs were stable in solution. Finally, release studies of both α- and β-arbutin CSNPs showed a significantly higher percentage release in comparison to α- and β-arbutin in their free form. Chitosan nanoparticles demonstrate considerable promise as a carrier system for α- and β-arbutin, the use of which is anticipated to improve delivery of arbutin through the skin, in order to improve its efficacy as a whitening agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.