Alpha-synuclein is a protein implicated in Parkinson’s disease and thought to be one of the main pathological drivers in the disease, although it remains unclear how this protein elicits its neurotoxic effects. Recent findings indicate that the assembly of toxic oligomeric species of alpha-synuclein may be one of the key processes for the pathology and spread of the disease. The absence of a sensitive in situ detection method has hindered the study of these oligomeric species and the role they play in the human brain until recently. In this review, we assess the evidence for the toxicity and prion-like activity of oligomeric forms of alpha-synuclein and discuss the advances in our understanding of the role of alpha-synuclein in Parkinson’s disease that may be brought about by the specific and sensitive detection of distinct oligomeric species in post-mortem patient brain. Finally, we discuss current approaches being taken to therapeutically target alpha-synuclein oligomers and their implications.
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders with a global burden of approximately 6.1 million patients. Alpha-synuclein has been linked to both the sporadic and familial forms of the disease. Moreover, alpha-synuclein is present in Lewy-bodies, the neuropathological hallmark of PD, and the protein and its aggregation have been widely linked to neurotoxic pathways that ultimately lead to neurodegeneration. Such pathways include autophagy/lysosomal dysregulation, synaptic dysfunction, mitochondrial disruption, and endoplasmic reticulum (ER) and oxidative stress. Alpha-synuclein has not only been shown to alter cellular pathways but also to spread between cells, causing aggregation in host cells. Therapeutic approaches will need to address several, if not all, of these angles of alpha-synuclein toxicity. Here we review the current advances in therapeutic efforts for PD that aim to produce a disease-modifying therapy by targeting the spread, production, aggregation, and degradation of alpha-synuclein. These include: receptor blocking strategies whereby putative alpha-synuclein receptors could be blocked inhibiting alpha-synuclein spread, an alpha-synuclein reduction which will decrease the amount alpha-synuclein available for aggregation and pathway disruption, the use of small molecules in order to target alpha-synuclein aggregation, immunotherapy and the increase of alpha-synuclein degradation by increasing autophagy/lysosomal flux. The research discussed here may lead to a disease-modifying therapy that tackles disease onset and progression in the future.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder and a central role for α-synuclein (αSyn; SNCA ) in disease aetiology has been proposed based on genetics and neuropathology. To better understand the pathological mechanisms of αSyn, we generated induced pluripotent stem cells (iPSCs) from healthy individuals and PD patients carrying the A53T SNCA mutation or a triplication of the SNCA locus and differentiated them into dopaminergic neurons (DAns). iPSC-derived DAn from PD patients carrying either mutation showed increased intracellular Syn accumulation, and DAns from patients carrying the SNCA triplication displayed oligomeric Syn pathology and elevated Syn extracellular release. Transcriptomic analysis of purified DAns revealed perturbations in expression of genes linked to mitochondrial function, consistent with observed reduction in mitochondrial respiration, impairment in mitochondrial membrane potential, aberrant mitochondrial morphology and decreased levels of phosphorylated DRP1 Ser616 . Parkinson’s iPSC-derived DAns showed increased endoplasmic reticulum stress and impairments in cholesterol and lipid homeostasis. Together, these data show a correlation between Syn cellular pathology and deficits in metabolic and cellular bioenergetics in the pathology of PD.
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms show that miR-7 is decreased in the substantia nigra of patients with PD and therefore may play an essential role in the regulation of α-synuclein expression. Furthermore, we have found that lentiviral mediated expression of miR-7 complementary binding sites to stably induce a loss of miR-7 function results in an increase in α-synuclein expression in vitro and in vivo. We have also shown that depletion of miR-7 using a miR-decoy produces a loss of nigral dopaminergic neurons accompanied by a reduction of striatal dopamine content. These data suggest that miR-7 has an important role in the regulation of α-synuclein and dopamine physiology and may provide a new paradigm to study the pathology of PD.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.